Metamath Proof Explorer


Theorem totprobd

Description: Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Hypotheses totprobd.1 φ P Prob
totprobd.2 φ A dom P
totprobd.3 φ B 𝒫 dom P
totprobd.4 φ B = dom P
totprobd.5 φ B ω
totprobd.6 φ Disj b B b
Assertion totprobd φ P A = * b B P b A

Proof

Step Hyp Ref Expression
1 totprobd.1 φ P Prob
2 totprobd.2 φ A dom P
3 totprobd.3 φ B 𝒫 dom P
4 totprobd.4 φ B = dom P
5 totprobd.5 φ B ω
6 totprobd.6 φ Disj b B b
7 elssuni A dom P A dom P
8 2 7 syl φ A dom P
9 8 4 sseqtrrd φ A B
10 sseqin2 A B B A = A
11 9 10 sylib φ B A = A
12 11 fveq2d φ P B A = P A
13 domprobmeas P Prob P measures dom P
14 1 13 syl φ P measures dom P
15 measinb P measures dom P A dom P c dom P P c A measures dom P
16 14 2 15 syl2anc φ c dom P P c A measures dom P
17 measvun c dom P P c A measures dom P B 𝒫 dom P B ω Disj b B b c dom P P c A B = * b B c dom P P c A b
18 16 3 5 6 17 syl112anc φ c dom P P c A B = * b B c dom P P c A b
19 eqidd φ c dom P P c A = c dom P P c A
20 simpr φ c = B c = B
21 20 ineq1d φ c = B c A = B A
22 21 fveq2d φ c = B P c A = P B A
23 domprobsiga P Prob dom P ran sigAlgebra
24 1 23 syl φ dom P ran sigAlgebra
25 sigaclcu dom P ran sigAlgebra B 𝒫 dom P B ω B dom P
26 24 3 5 25 syl3anc φ B dom P
27 inelsiga dom P ran sigAlgebra B dom P A dom P B A dom P
28 24 26 2 27 syl3anc φ B A dom P
29 prob01 P Prob B A dom P P B A 0 1
30 1 28 29 syl2anc φ P B A 0 1
31 19 22 26 30 fvmptd φ c dom P P c A B = P B A
32 eqidd φ b B c dom P P c A = c dom P P c A
33 simpr φ b B c = b c = b
34 33 ineq1d φ b B c = b c A = b A
35 34 fveq2d φ b B c = b P c A = P b A
36 simpr φ b B b B
37 3 adantr φ b B B 𝒫 dom P
38 elelpwi b B B 𝒫 dom P b dom P
39 36 37 38 syl2anc φ b B b dom P
40 1 adantr φ b B P Prob
41 24 adantr φ b B dom P ran sigAlgebra
42 2 adantr φ b B A dom P
43 inelsiga dom P ran sigAlgebra b dom P A dom P b A dom P
44 41 39 42 43 syl3anc φ b B b A dom P
45 prob01 P Prob b A dom P P b A 0 1
46 40 44 45 syl2anc φ b B P b A 0 1
47 32 35 39 46 fvmptd φ b B c dom P P c A b = P b A
48 47 esumeq2dv φ * b B c dom P P c A b = * b B P b A
49 18 31 48 3eqtr3d φ P B A = * b B P b A
50 12 49 eqtr3d φ P A = * b B P b A