| Step |
Hyp |
Ref |
Expression |
| 1 |
|
totprobd.1 |
|
| 2 |
|
totprobd.2 |
|
| 3 |
|
totprobd.3 |
|
| 4 |
|
totprobd.4 |
|
| 5 |
|
totprobd.5 |
|
| 6 |
|
totprobd.6 |
|
| 7 |
|
elssuni |
|
| 8 |
2 7
|
syl |
|
| 9 |
8 4
|
sseqtrrd |
|
| 10 |
|
sseqin2 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
11
|
fveq2d |
|
| 13 |
|
domprobmeas |
|
| 14 |
1 13
|
syl |
|
| 15 |
|
measinb |
|
| 16 |
14 2 15
|
syl2anc |
|
| 17 |
|
measvun |
|
| 18 |
16 3 5 6 17
|
syl112anc |
|
| 19 |
|
eqidd |
|
| 20 |
|
simpr |
|
| 21 |
20
|
ineq1d |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
domprobsiga |
|
| 24 |
1 23
|
syl |
|
| 25 |
|
sigaclcu |
|
| 26 |
24 3 5 25
|
syl3anc |
|
| 27 |
|
inelsiga |
|
| 28 |
24 26 2 27
|
syl3anc |
|
| 29 |
|
prob01 |
|
| 30 |
1 28 29
|
syl2anc |
|
| 31 |
19 22 26 30
|
fvmptd |
|
| 32 |
|
eqidd |
|
| 33 |
|
simpr |
|
| 34 |
33
|
ineq1d |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
simpr |
|
| 37 |
3
|
adantr |
|
| 38 |
|
elelpwi |
|
| 39 |
36 37 38
|
syl2anc |
|
| 40 |
1
|
adantr |
|
| 41 |
24
|
adantr |
|
| 42 |
2
|
adantr |
|
| 43 |
|
inelsiga |
|
| 44 |
41 39 42 43
|
syl3anc |
|
| 45 |
|
prob01 |
|
| 46 |
40 44 45
|
syl2anc |
|
| 47 |
32 35 39 46
|
fvmptd |
|
| 48 |
47
|
esumeq2dv |
|
| 49 |
18 31 48
|
3eqtr3d |
|
| 50 |
12 49
|
eqtr3d |
|