Step |
Hyp |
Ref |
Expression |
1 |
|
totprobd.1 |
|
2 |
|
totprobd.2 |
|
3 |
|
totprobd.3 |
|
4 |
|
totprobd.4 |
|
5 |
|
totprobd.5 |
|
6 |
|
totprobd.6 |
|
7 |
|
elssuni |
|
8 |
2 7
|
syl |
|
9 |
8 4
|
sseqtrrd |
|
10 |
|
sseqin2 |
|
11 |
9 10
|
sylib |
|
12 |
11
|
fveq2d |
|
13 |
|
domprobmeas |
|
14 |
1 13
|
syl |
|
15 |
|
measinb |
|
16 |
14 2 15
|
syl2anc |
|
17 |
|
measvun |
|
18 |
16 3 5 6 17
|
syl112anc |
|
19 |
|
eqidd |
|
20 |
|
simpr |
|
21 |
20
|
ineq1d |
|
22 |
21
|
fveq2d |
|
23 |
|
domprobsiga |
|
24 |
1 23
|
syl |
|
25 |
|
sigaclcu |
|
26 |
24 3 5 25
|
syl3anc |
|
27 |
|
inelsiga |
|
28 |
24 26 2 27
|
syl3anc |
|
29 |
|
prob01 |
|
30 |
1 28 29
|
syl2anc |
|
31 |
19 22 26 30
|
fvmptd |
|
32 |
|
eqidd |
|
33 |
|
simpr |
|
34 |
33
|
ineq1d |
|
35 |
34
|
fveq2d |
|
36 |
|
simpr |
|
37 |
3
|
adantr |
|
38 |
|
elelpwi |
|
39 |
36 37 38
|
syl2anc |
|
40 |
1
|
adantr |
|
41 |
24
|
adantr |
|
42 |
2
|
adantr |
|
43 |
|
inelsiga |
|
44 |
41 39 42 43
|
syl3anc |
|
45 |
|
prob01 |
|
46 |
40 44 45
|
syl2anc |
|
47 |
32 35 39 46
|
fvmptd |
|
48 |
47
|
esumeq2dv |
|
49 |
18 31 48
|
3eqtr3d |
|
50 |
12 49
|
eqtr3d |
|