Metamath Proof Explorer


Theorem totprob

Description: Law of total probability. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion totprob PProbAdomPB=domPB𝒫domPBωDisjbBbPA=*bBPbA

Proof

Step Hyp Ref Expression
1 simp1 PProbAdomPB=domPB𝒫domPBωDisjbBbPProb
2 simp2 PProbAdomPB=domPB𝒫domPBωDisjbBbAdomP
3 simp32 PProbAdomPB=domPB𝒫domPBωDisjbBbB𝒫domP
4 simp31 PProbAdomPB=domPB𝒫domPBωDisjbBbB=domP
5 simp33l PProbAdomPB=domPB𝒫domPBωDisjbBbBω
6 simp33r PProbAdomPB=domPB𝒫domPBωDisjbBbDisjbBb
7 id b=cb=c
8 7 cbvdisjv DisjbBbDisjcBc
9 6 8 sylib PProbAdomPB=domPB𝒫domPBωDisjbBbDisjcBc
10 1 2 3 4 5 9 totprobd PProbAdomPB=domPB𝒫domPBωDisjbBbPA=*cBPcA
11 ineq1 b=cbA=cA
12 11 fveq2d b=cPbA=PcA
13 12 cbvesumv *bBPbA=*cBPcA
14 10 13 eqtr4di PProbAdomPB=domPB𝒫domPBωDisjbBbPA=*bBPbA