Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Probability
Probability Theory
totprob
Next ⟩
probfinmeasb
Metamath Proof Explorer
Ascii
Unicode
Theorem
totprob
Description:
Law of total probability.
(Contributed by
Thierry Arnoux
, 25-Dec-2016)
Ref
Expression
Assertion
totprob
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
P
⁡
A
=
∑
*
b
∈
B
P
⁡
b
∩
A
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
P
∈
Prob
2
simp2
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
A
∈
dom
⁡
P
3
simp32
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
B
∈
𝒫
dom
⁡
P
4
simp31
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
⋃
B
=
⋃
dom
⁡
P
5
simp33l
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
B
≼
ω
6
simp33r
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
Disj
b
∈
B
b
7
id
⊢
b
=
c
→
b
=
c
8
7
cbvdisjv
⊢
Disj
b
∈
B
b
↔
Disj
c
∈
B
c
9
6
8
sylib
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
Disj
c
∈
B
c
10
1
2
3
4
5
9
totprobd
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
P
⁡
A
=
∑
*
c
∈
B
P
⁡
c
∩
A
11
ineq1
⊢
b
=
c
→
b
∩
A
=
c
∩
A
12
11
fveq2d
⊢
b
=
c
→
P
⁡
b
∩
A
=
P
⁡
c
∩
A
13
12
cbvesumv
⊢
∑
*
b
∈
B
P
⁡
b
∩
A
=
∑
*
c
∈
B
P
⁡
c
∩
A
14
10
13
eqtr4di
⊢
P
∈
Prob
∧
A
∈
dom
⁡
P
∧
⋃
B
=
⋃
dom
⁡
P
∧
B
∈
𝒫
dom
⁡
P
∧
B
≼
ω
∧
Disj
b
∈
B
b
→
P
⁡
A
=
∑
*
b
∈
B
P
⁡
b
∩
A