Metamath Proof Explorer


Theorem totprob

Description: Law of total probability. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion totprob P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b P A = * b B P b A

Proof

Step Hyp Ref Expression
1 simp1 P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b P Prob
2 simp2 P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b A dom P
3 simp32 P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b B 𝒫 dom P
4 simp31 P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b B = dom P
5 simp33l P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b B ω
6 simp33r P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b Disj b B b
7 id b = c b = c
8 7 cbvdisjv Disj b B b Disj c B c
9 6 8 sylib P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b Disj c B c
10 1 2 3 4 5 9 totprobd P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b P A = * c B P c A
11 ineq1 b = c b A = c A
12 11 fveq2d b = c P b A = P c A
13 12 cbvesumv * b B P b A = * c B P c A
14 10 13 eqtr4di P Prob A dom P B = dom P B 𝒫 dom P B ω Disj b B b P A = * b B P b A