| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlktovf1o.d |
|- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
| 2 |
|
wwlktovf1o.r |
|- R = { n e. V | { P , n } e. X } |
| 3 |
|
wwlktovf1o.f |
|- F = ( t e. D |-> ( t ` 1 ) ) |
| 4 |
1 2 3
|
wwlktovf |
|- F : D --> R |
| 5 |
4
|
a1i |
|- ( P e. V -> F : D --> R ) |
| 6 |
|
preq2 |
|- ( n = p -> { P , n } = { P , p } ) |
| 7 |
6
|
eleq1d |
|- ( n = p -> ( { P , n } e. X <-> { P , p } e. X ) ) |
| 8 |
7 2
|
elrab2 |
|- ( p e. R <-> ( p e. V /\ { P , p } e. X ) ) |
| 9 |
|
simpl |
|- ( ( p e. V /\ { P , p } e. X ) -> p e. V ) |
| 10 |
9
|
anim2i |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( P e. V /\ p e. V ) ) |
| 11 |
|
eqidd |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> { <. 0 , P >. , <. 1 , p >. } = { <. 0 , P >. , <. 1 , p >. } ) |
| 12 |
|
wrdlen2i |
|- ( ( P e. V /\ p e. V ) -> ( { <. 0 , P >. , <. 1 , p >. } = { <. 0 , P >. , <. 1 , p >. } -> ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) ) |
| 13 |
10 11 12
|
sylc |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) |
| 14 |
|
prex |
|- { <. 0 , P >. , <. 1 , p >. } e. _V |
| 15 |
14
|
a1i |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> { <. 0 , P >. , <. 1 , p >. } e. _V ) |
| 16 |
|
eleq1 |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } e. Word V <-> u e. Word V ) ) |
| 17 |
16
|
biimpd |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } e. Word V -> u e. Word V ) ) |
| 18 |
17
|
adantr |
|- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( { <. 0 , P >. , <. 1 , p >. } e. Word V -> u e. Word V ) ) |
| 19 |
18
|
com12 |
|- ( { <. 0 , P >. , <. 1 , p >. } e. Word V -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> u e. Word V ) ) |
| 20 |
19
|
adantr |
|- ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> u e. Word V ) ) |
| 21 |
20
|
adantr |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> u e. Word V ) ) |
| 22 |
21
|
impcom |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> u e. Word V ) |
| 23 |
|
fveqeq2 |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 <-> ( # ` u ) = 2 ) ) |
| 24 |
23
|
biimpd |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 -> ( # ` u ) = 2 ) ) |
| 25 |
24
|
adantr |
|- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 -> ( # ` u ) = 2 ) ) |
| 26 |
25
|
com12 |
|- ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( # ` u ) = 2 ) ) |
| 27 |
26
|
adantl |
|- ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( # ` u ) = 2 ) ) |
| 28 |
27
|
adantr |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( # ` u ) = 2 ) ) |
| 29 |
28
|
impcom |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( # ` u ) = 2 ) |
| 30 |
|
fveq1 |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = ( u ` 0 ) ) |
| 31 |
30
|
eqeq1d |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P <-> ( u ` 0 ) = P ) ) |
| 32 |
31
|
biimpd |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P -> ( u ` 0 ) = P ) ) |
| 33 |
32
|
adantr |
|- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P -> ( u ` 0 ) = P ) ) |
| 34 |
33
|
com12 |
|- ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( u ` 0 ) = P ) ) |
| 35 |
34
|
adantr |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( u ` 0 ) = P ) ) |
| 36 |
35
|
adantl |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( u ` 0 ) = P ) ) |
| 37 |
36
|
impcom |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( u ` 0 ) = P ) |
| 38 |
|
fveq1 |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = ( u ` 1 ) ) |
| 39 |
38
|
eqeq1d |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p <-> ( u ` 1 ) = p ) ) |
| 40 |
31 39
|
anbi12d |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) <-> ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) ) ) |
| 41 |
|
preq12 |
|- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> { ( u ` 0 ) , ( u ` 1 ) } = { P , p } ) |
| 42 |
41
|
eqcomd |
|- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> { P , p } = { ( u ` 0 ) , ( u ` 1 ) } ) |
| 43 |
42
|
eleq1d |
|- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> ( { P , p } e. X <-> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 44 |
43
|
biimpd |
|- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 45 |
40 44
|
biimtrdi |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 46 |
45
|
com12 |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 47 |
46
|
adantl |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 48 |
47
|
com13 |
|- ( { P , p } e. X -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 49 |
48
|
ad2antll |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 50 |
49
|
impcom |
|- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 51 |
50
|
imp |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) |
| 52 |
29 37 51
|
3jca |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 53 |
|
eqcom |
|- ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p <-> p = ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) ) |
| 54 |
38
|
eqeq2d |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( p = ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) <-> p = ( u ` 1 ) ) ) |
| 55 |
54
|
biimpd |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( p = ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) -> p = ( u ` 1 ) ) ) |
| 56 |
53 55
|
biimtrid |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p -> p = ( u ` 1 ) ) ) |
| 57 |
56
|
com12 |
|- ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p -> ( { <. 0 , P >. , <. 1 , p >. } = u -> p = ( u ` 1 ) ) ) |
| 58 |
57
|
ad2antll |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> p = ( u ` 1 ) ) ) |
| 59 |
58
|
com12 |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> p = ( u ` 1 ) ) ) |
| 60 |
59
|
adantr |
|- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> p = ( u ` 1 ) ) ) |
| 61 |
60
|
imp |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> p = ( u ` 1 ) ) |
| 62 |
22 52 61
|
jca31 |
|- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 63 |
62
|
exp31 |
|- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) ) |
| 64 |
63
|
eqcoms |
|- ( u = { <. 0 , P >. , <. 1 , p >. } -> ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) ) |
| 65 |
64
|
impcom |
|- ( ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) /\ u = { <. 0 , P >. , <. 1 , p >. } ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) |
| 66 |
15 65
|
spcimedv |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> E. u ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) |
| 67 |
13 66
|
mpd |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 68 |
|
fveqeq2 |
|- ( w = u -> ( ( # ` w ) = 2 <-> ( # ` u ) = 2 ) ) |
| 69 |
|
fveq1 |
|- ( w = u -> ( w ` 0 ) = ( u ` 0 ) ) |
| 70 |
69
|
eqeq1d |
|- ( w = u -> ( ( w ` 0 ) = P <-> ( u ` 0 ) = P ) ) |
| 71 |
|
fveq1 |
|- ( w = u -> ( w ` 1 ) = ( u ` 1 ) ) |
| 72 |
69 71
|
preq12d |
|- ( w = u -> { ( w ` 0 ) , ( w ` 1 ) } = { ( u ` 0 ) , ( u ` 1 ) } ) |
| 73 |
72
|
eleq1d |
|- ( w = u -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 74 |
68 70 73
|
3anbi123d |
|- ( w = u -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 75 |
74
|
elrab |
|- ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } <-> ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 76 |
75
|
anbi1i |
|- ( ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) <-> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 77 |
76
|
exbii |
|- ( E. u ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) <-> E. u ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 78 |
67 77
|
sylibr |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) ) |
| 79 |
|
df-rex |
|- ( E. u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } p = ( u ` 1 ) <-> E. u ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) ) |
| 80 |
78 79
|
sylibr |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } p = ( u ` 1 ) ) |
| 81 |
1
|
rexeqi |
|- ( E. u e. D p = ( u ` 1 ) <-> E. u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } p = ( u ` 1 ) ) |
| 82 |
80 81
|
sylibr |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u e. D p = ( u ` 1 ) ) |
| 83 |
|
fveq1 |
|- ( t = u -> ( t ` 1 ) = ( u ` 1 ) ) |
| 84 |
|
fvex |
|- ( u ` 1 ) e. _V |
| 85 |
83 3 84
|
fvmpt |
|- ( u e. D -> ( F ` u ) = ( u ` 1 ) ) |
| 86 |
85
|
eqeq2d |
|- ( u e. D -> ( p = ( F ` u ) <-> p = ( u ` 1 ) ) ) |
| 87 |
86
|
rexbiia |
|- ( E. u e. D p = ( F ` u ) <-> E. u e. D p = ( u ` 1 ) ) |
| 88 |
82 87
|
sylibr |
|- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u e. D p = ( F ` u ) ) |
| 89 |
8 88
|
sylan2b |
|- ( ( P e. V /\ p e. R ) -> E. u e. D p = ( F ` u ) ) |
| 90 |
89
|
ralrimiva |
|- ( P e. V -> A. p e. R E. u e. D p = ( F ` u ) ) |
| 91 |
|
dffo3 |
|- ( F : D -onto-> R <-> ( F : D --> R /\ A. p e. R E. u e. D p = ( F ` u ) ) ) |
| 92 |
5 90 91
|
sylanbrc |
|- ( P e. V -> F : D -onto-> R ) |