Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
|- S = ( Spec ` R ) |
2 |
|
zartop.2 |
|- J = ( TopOpen ` S ) |
3 |
|
sseq1 |
|- ( i = k -> ( i C_ j <-> k C_ j ) ) |
4 |
3
|
rabbidv |
|- ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
5 |
|
sseq2 |
|- ( j = l -> ( k C_ j <-> k C_ l ) ) |
6 |
5
|
cbvrabv |
|- { j e. ( PrmIdeal ` R ) | k C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l } |
7 |
4 6
|
eqtrdi |
|- ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l } ) |
8 |
7
|
cbvmptv |
|- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { l e. ( PrmIdeal ` R ) | k C_ l } ) |
9 |
1 2 8
|
zarcmplem |
|- ( R e. CRing -> J e. Comp ) |