Metamath Proof Explorer


Theorem zarcmp

Description: The Zariski topology is compact. Proposition 1.1.10(ii) of EGA, p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024)

Ref Expression
Hypotheses zartop.1
|- S = ( Spec ` R )
zartop.2
|- J = ( TopOpen ` S )
Assertion zarcmp
|- ( R e. CRing -> J e. Comp )

Proof

Step Hyp Ref Expression
1 zartop.1
 |-  S = ( Spec ` R )
2 zartop.2
 |-  J = ( TopOpen ` S )
3 sseq1
 |-  ( i = k -> ( i C_ j <-> k C_ j ) )
4 3 rabbidv
 |-  ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } )
5 sseq2
 |-  ( j = l -> ( k C_ j <-> k C_ l ) )
6 5 cbvrabv
 |-  { j e. ( PrmIdeal ` R ) | k C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l }
7 4 6 eqtrdi
 |-  ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l } )
8 7 cbvmptv
 |-  ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { l e. ( PrmIdeal ` R ) | k C_ l } )
9 1 2 8 zarcmplem
 |-  ( R e. CRing -> J e. Comp )