| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 |  |-  S = ( Spec ` R ) | 
						
							| 2 |  | zartop.2 |  |-  J = ( TopOpen ` S ) | 
						
							| 3 |  | zarcmplem.1 |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 4 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 | 1 2 5 | zar0ring |  |-  ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> J = { (/) } ) | 
						
							| 7 | 4 6 | sylan |  |-  ( ( R e. CRing /\ ( # ` ( Base ` R ) ) = 1 ) -> J = { (/) } ) | 
						
							| 8 |  | 0cmp |  |-  { (/) } e. Comp | 
						
							| 9 | 7 8 | eqeltrdi |  |-  ( ( R e. CRing /\ ( # ` ( Base ` R ) ) = 1 ) -> J e. Comp ) | 
						
							| 10 | 1 2 | zartop |  |-  ( R e. CRing -> J e. Top ) | 
						
							| 11 |  | fvex |  |-  ( LIdeal ` R ) e. _V | 
						
							| 12 | 11 | mptex |  |-  ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) e. _V | 
						
							| 13 | 3 12 | eqeltri |  |-  V e. _V | 
						
							| 14 |  | imaexg |  |-  ( V e. _V -> ( V " ( a supp ( 0g ` R ) ) ) e. _V ) | 
						
							| 15 | 13 14 | mp1i |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. _V ) | 
						
							| 16 |  | suppssdm |  |-  ( a supp ( 0g ` R ) ) C_ dom a | 
						
							| 17 |  | imass2 |  |-  ( ( a supp ( 0g ` R ) ) C_ dom a -> ( V " ( a supp ( 0g ` R ) ) ) C_ ( V " dom a ) ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) C_ ( V " dom a ) ) | 
						
							| 19 | 3 | funmpt2 |  |-  Fun V | 
						
							| 20 |  | ssidd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> dom a C_ dom a ) | 
						
							| 21 |  | simpllr |  |-  ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) | 
						
							| 22 |  | fvexd |  |-  ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( Base ` R ) e. _V ) | 
						
							| 23 | 13 | cnvex |  |-  `' V e. _V | 
						
							| 24 | 23 | imaex |  |-  ( `' V " x ) e. _V | 
						
							| 25 | 24 | a1i |  |-  ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( `' V " x ) e. _V ) | 
						
							| 26 | 22 25 | elmapd |  |-  ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( a e. ( ( Base ` R ) ^m ( `' V " x ) ) <-> a : ( `' V " x ) --> ( Base ` R ) ) ) | 
						
							| 27 | 21 26 | mpbid |  |-  ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> a : ( `' V " x ) --> ( Base ` R ) ) | 
						
							| 28 | 27 | fdmd |  |-  ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> dom a = ( `' V " x ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> dom a = ( `' V " x ) ) | 
						
							| 30 | 20 29 | sseqtrd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> dom a C_ ( `' V " x ) ) | 
						
							| 31 |  | funimass2 |  |-  ( ( Fun V /\ dom a C_ ( `' V " x ) ) -> ( V " dom a ) C_ x ) | 
						
							| 32 | 19 30 31 | sylancr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " dom a ) C_ x ) | 
						
							| 33 | 18 32 | sstrd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) C_ x ) | 
						
							| 34 | 15 33 | elpwd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. ~P x ) | 
						
							| 35 |  | simpllr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> a finSupp ( 0g ` R ) ) | 
						
							| 36 | 35 | fsuppimpd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) e. Fin ) | 
						
							| 37 |  | imafi |  |-  ( ( Fun V /\ ( a supp ( 0g ` R ) ) e. Fin ) -> ( V " ( a supp ( 0g ` R ) ) ) e. Fin ) | 
						
							| 38 | 19 36 37 | sylancr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. Fin ) | 
						
							| 39 | 34 38 | elind |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. ( ~P x i^i Fin ) ) | 
						
							| 40 |  | inteq |  |-  ( y = ( V " ( a supp ( 0g ` R ) ) ) -> |^| y = |^| ( V " ( a supp ( 0g ` R ) ) ) ) | 
						
							| 41 | 40 | eqeq2d |  |-  ( y = ( V " ( a supp ( 0g ` R ) ) ) -> ( (/) = |^| y <-> (/) = |^| ( V " ( a supp ( 0g ` R ) ) ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ y = ( V " ( a supp ( 0g ` R ) ) ) ) -> ( (/) = |^| y <-> (/) = |^| ( V " ( a supp ( 0g ` R ) ) ) ) ) | 
						
							| 43 | 16 29 | sseqtrid |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ ( `' V " x ) ) | 
						
							| 44 |  | cnvimass |  |-  ( `' V " x ) C_ dom V | 
						
							| 45 | 43 44 | sstrdi |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ dom V ) | 
						
							| 46 |  | intimafv |  |-  ( ( Fun V /\ ( a supp ( 0g ` R ) ) C_ dom V ) -> |^| ( V " ( a supp ( 0g ` R ) ) ) = |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) ) | 
						
							| 47 | 19 45 46 | sylancr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> |^| ( V " ( a supp ( 0g ` R ) ) ) = |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) ) | 
						
							| 48 |  | simplll |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> R e. CRing ) | 
						
							| 49 | 48 | crngringd |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> R e. Ring ) | 
						
							| 50 | 49 | ad4antr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> R e. Ring ) | 
						
							| 51 |  | fvex |  |-  ( PrmIdeal ` R ) e. _V | 
						
							| 52 | 51 | rabex |  |-  { j e. ( PrmIdeal ` R ) | i C_ j } e. _V | 
						
							| 53 | 52 3 | dmmpti |  |-  dom V = ( LIdeal ` R ) | 
						
							| 54 | 45 53 | sseqtrdi |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ ( LIdeal ` R ) ) | 
						
							| 55 |  | simp-7r |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( # ` ( Base ` R ) ) =/= 1 ) | 
						
							| 56 |  | simpllr |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( 1r ` R ) = ( R gsum a ) ) | 
						
							| 57 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 58 |  | ringcmn |  |-  ( R e. Ring -> R e. CMnd ) | 
						
							| 59 | 4 58 | syl |  |-  ( R e. CRing -> R e. CMnd ) | 
						
							| 60 | 59 | ad8antr |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> R e. CMnd ) | 
						
							| 61 | 24 | a1i |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( `' V " x ) e. _V ) | 
						
							| 62 | 27 | ad2antrr |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> a : ( `' V " x ) --> ( Base ` R ) ) | 
						
							| 63 |  | simpr |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( a supp ( 0g ` R ) ) = (/) ) | 
						
							| 64 |  | ssidd |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> (/) C_ (/) ) | 
						
							| 65 | 63 64 | eqsstrd |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( a supp ( 0g ` R ) ) C_ (/) ) | 
						
							| 66 | 35 | adantr |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> a finSupp ( 0g ` R ) ) | 
						
							| 67 | 5 57 60 61 62 65 66 | gsumres |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( R gsum ( a |` (/) ) ) = ( R gsum a ) ) | 
						
							| 68 |  | res0 |  |-  ( a |` (/) ) = (/) | 
						
							| 69 | 68 | oveq2i |  |-  ( R gsum ( a |` (/) ) ) = ( R gsum (/) ) | 
						
							| 70 | 57 | gsum0 |  |-  ( R gsum (/) ) = ( 0g ` R ) | 
						
							| 71 | 69 70 | eqtri |  |-  ( R gsum ( a |` (/) ) ) = ( 0g ` R ) | 
						
							| 72 | 67 71 | eqtr3di |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( R gsum a ) = ( 0g ` R ) ) | 
						
							| 73 | 56 72 | eqtr2d |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( 0g ` R ) = ( 1r ` R ) ) | 
						
							| 74 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 75 | 5 57 74 | 01eq0ring |  |-  ( ( R e. Ring /\ ( 0g ` R ) = ( 1r ` R ) ) -> ( Base ` R ) = { ( 0g ` R ) } ) | 
						
							| 76 | 50 73 75 | syl2an2r |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( Base ` R ) = { ( 0g ` R ) } ) | 
						
							| 77 | 76 | fveq2d |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( # ` ( Base ` R ) ) = ( # ` { ( 0g ` R ) } ) ) | 
						
							| 78 |  | fvex |  |-  ( 0g ` R ) e. _V | 
						
							| 79 |  | hashsng |  |-  ( ( 0g ` R ) e. _V -> ( # ` { ( 0g ` R ) } ) = 1 ) | 
						
							| 80 | 78 79 | ax-mp |  |-  ( # ` { ( 0g ` R ) } ) = 1 | 
						
							| 81 | 77 80 | eqtrdi |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( # ` ( Base ` R ) ) = 1 ) | 
						
							| 82 | 55 81 | mteqand |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) =/= (/) ) | 
						
							| 83 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 84 | 3 83 | zarclsiin |  |-  ( ( R e. Ring /\ ( a supp ( 0g ` R ) ) C_ ( LIdeal ` R ) /\ ( a supp ( 0g ` R ) ) =/= (/) ) -> |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) ) | 
						
							| 85 | 50 54 82 84 | syl3anc |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) ) | 
						
							| 86 |  | nfv |  |-  F/ l ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) | 
						
							| 87 |  | nfra1 |  |-  F/ l A. l e. ( `' V " x ) ( a ` l ) e. l | 
						
							| 88 | 86 87 | nfan |  |-  F/ l ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) | 
						
							| 89 | 54 | sselda |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ l e. ( a supp ( 0g ` R ) ) ) -> l e. ( LIdeal ` R ) ) | 
						
							| 90 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 91 | 5 90 | lidlss |  |-  ( l e. ( LIdeal ` R ) -> l C_ ( Base ` R ) ) | 
						
							| 92 | 89 91 | syl |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ l e. ( a supp ( 0g ` R ) ) ) -> l C_ ( Base ` R ) ) | 
						
							| 93 | 92 | ex |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( l e. ( a supp ( 0g ` R ) ) -> l C_ ( Base ` R ) ) ) | 
						
							| 94 | 88 93 | ralrimi |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> A. l e. ( a supp ( 0g ` R ) ) l C_ ( Base ` R ) ) | 
						
							| 95 |  | unissb |  |-  ( U. ( a supp ( 0g ` R ) ) C_ ( Base ` R ) <-> A. l e. ( a supp ( 0g ` R ) ) l C_ ( Base ` R ) ) | 
						
							| 96 | 94 95 | sylibr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> U. ( a supp ( 0g ` R ) ) C_ ( Base ` R ) ) | 
						
							| 97 | 83 5 90 | rspcl |  |-  ( ( R e. Ring /\ U. ( a supp ( 0g ` R ) ) C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) ) | 
						
							| 98 | 50 96 97 | syl2anc |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) ) | 
						
							| 99 | 5 90 | lidlss |  |-  ( ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) C_ ( Base ` R ) ) | 
						
							| 100 | 98 99 | syl |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) C_ ( Base ` R ) ) | 
						
							| 101 | 83 5 74 | rsp1 |  |-  ( R e. Ring -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) = ( Base ` R ) ) | 
						
							| 102 | 50 101 | syl |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) = ( Base ` R ) ) | 
						
							| 103 | 27 | adantr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> a : ( `' V " x ) --> ( Base ` R ) ) | 
						
							| 104 | 103 43 | fssresd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a |` ( a supp ( 0g ` R ) ) ) : ( a supp ( 0g ` R ) ) --> ( Base ` R ) ) | 
						
							| 105 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 106 |  | ovex |  |-  ( a supp ( 0g ` R ) ) e. _V | 
						
							| 107 | 105 106 | elmap |  |-  ( ( a |` ( a supp ( 0g ` R ) ) ) e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) <-> ( a |` ( a supp ( 0g ` R ) ) ) : ( a supp ( 0g ` R ) ) --> ( Base ` R ) ) | 
						
							| 108 | 104 107 | sylibr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a |` ( a supp ( 0g ` R ) ) ) e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) ) | 
						
							| 109 |  | breq1 |  |-  ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( b finSupp ( 0g ` R ) <-> ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) ) ) | 
						
							| 110 |  | oveq2 |  |-  ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( R gsum b ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) ) | 
						
							| 111 | 110 | eqeq2d |  |-  ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( ( 1r ` R ) = ( R gsum b ) <-> ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) ) ) | 
						
							| 112 |  | fveq1 |  |-  ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( b ` k ) = ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) ) | 
						
							| 113 | 112 | eleq1d |  |-  ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( ( b ` k ) e. k <-> ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) | 
						
							| 114 | 113 | ralbidv |  |-  ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k <-> A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) | 
						
							| 115 | 109 111 114 | 3anbi123d |  |-  ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) <-> ( ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) /\ A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) ) | 
						
							| 116 | 115 | adantl |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ b = ( a |` ( a supp ( 0g ` R ) ) ) ) -> ( ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) <-> ( ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) /\ A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) ) | 
						
							| 117 |  | fvexd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 0g ` R ) e. _V ) | 
						
							| 118 | 35 117 | fsuppres |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) ) | 
						
							| 119 |  | simplr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 1r ` R ) = ( R gsum a ) ) | 
						
							| 120 | 50 58 | syl |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> R e. CMnd ) | 
						
							| 121 | 24 | a1i |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( `' V " x ) e. _V ) | 
						
							| 122 |  | ssidd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ ( a supp ( 0g ` R ) ) ) | 
						
							| 123 | 5 57 120 121 103 122 35 | gsumres |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) = ( R gsum a ) ) | 
						
							| 124 | 119 123 | eqtr4d |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) ) | 
						
							| 125 |  | simpr |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> k e. ( a supp ( 0g ` R ) ) ) | 
						
							| 126 | 125 | fvresd |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) = ( a ` k ) ) | 
						
							| 127 | 16 28 | sseqtrid |  |-  ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( a supp ( 0g ` R ) ) C_ ( `' V " x ) ) | 
						
							| 128 | 127 | sselda |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) -> k e. ( `' V " x ) ) | 
						
							| 129 |  | fveq2 |  |-  ( l = k -> ( a ` l ) = ( a ` k ) ) | 
						
							| 130 |  | id |  |-  ( l = k -> l = k ) | 
						
							| 131 | 129 130 | eleq12d |  |-  ( l = k -> ( ( a ` l ) e. l <-> ( a ` k ) e. k ) ) | 
						
							| 132 | 131 | adantl |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) /\ l = k ) -> ( ( a ` l ) e. l <-> ( a ` k ) e. k ) ) | 
						
							| 133 | 128 132 | rspcdv |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( A. l e. ( `' V " x ) ( a ` l ) e. l -> ( a ` k ) e. k ) ) | 
						
							| 134 | 133 | imp |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a ` k ) e. k ) | 
						
							| 135 | 134 | an32s |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( a ` k ) e. k ) | 
						
							| 136 | 126 135 | eqeltrd |  |-  ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) | 
						
							| 137 | 136 | ralrimiva |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) | 
						
							| 138 | 118 124 137 | 3jca |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) /\ A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) | 
						
							| 139 | 108 116 138 | rspcedvd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> E. b e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) ) | 
						
							| 140 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 141 | 83 5 57 140 50 54 | elrspunidl |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) <-> E. b e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) ) ) | 
						
							| 142 | 139 141 | mpbird |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) | 
						
							| 143 | 142 | snssd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> { ( 1r ` R ) } C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) | 
						
							| 144 | 83 90 | rspssp |  |-  ( ( R e. Ring /\ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) /\ { ( 1r ` R ) } C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) | 
						
							| 145 | 50 98 143 144 | syl3anc |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) | 
						
							| 146 | 102 145 | eqsstrrd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( Base ` R ) C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) | 
						
							| 147 | 100 146 | eqssd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) = ( Base ` R ) ) | 
						
							| 148 | 147 | fveq2d |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) = ( V ` ( Base ` R ) ) ) | 
						
							| 149 | 90 5 | lidl1 |  |-  ( R e. Ring -> ( Base ` R ) e. ( LIdeal ` R ) ) | 
						
							| 150 | 4 149 | syl |  |-  ( R e. CRing -> ( Base ` R ) e. ( LIdeal ` R ) ) | 
						
							| 151 | 3 5 | zarcls1 |  |-  ( ( R e. CRing /\ ( Base ` R ) e. ( LIdeal ` R ) ) -> ( ( V ` ( Base ` R ) ) = (/) <-> ( Base ` R ) = ( Base ` R ) ) ) | 
						
							| 152 | 150 151 | mpdan |  |-  ( R e. CRing -> ( ( V ` ( Base ` R ) ) = (/) <-> ( Base ` R ) = ( Base ` R ) ) ) | 
						
							| 153 | 5 152 | mpbiri |  |-  ( R e. CRing -> ( V ` ( Base ` R ) ) = (/) ) | 
						
							| 154 | 153 | ad7antr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V ` ( Base ` R ) ) = (/) ) | 
						
							| 155 | 148 154 | eqtrd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) = (/) ) | 
						
							| 156 | 47 85 155 | 3eqtrrd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> (/) = |^| ( V " ( a supp ( 0g ` R ) ) ) ) | 
						
							| 157 | 39 42 156 | rspcedvd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) | 
						
							| 158 | 157 | exp41 |  |-  ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) -> ( a finSupp ( 0g ` R ) -> ( ( 1r ` R ) = ( R gsum a ) -> ( A. l e. ( `' V " x ) ( a ` l ) e. l -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) ) ) ) | 
						
							| 159 | 158 | 3imp2 |  |-  ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ ( a finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum a ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) ) -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) | 
						
							| 160 | 5 74 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 161 | 49 160 | syl |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 162 |  | simplr |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x e. ~P ( Clsd ` J ) ) | 
						
							| 163 |  | eqid |  |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R ) | 
						
							| 164 | 1 2 163 3 | zartopn |  |-  ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran V = ( Clsd ` J ) ) ) | 
						
							| 165 | 164 | simprd |  |-  ( R e. CRing -> ran V = ( Clsd ` J ) ) | 
						
							| 166 | 48 165 | syl |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ran V = ( Clsd ` J ) ) | 
						
							| 167 | 166 | pweqd |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ~P ran V = ~P ( Clsd ` J ) ) | 
						
							| 168 | 162 167 | eleqtrrd |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x e. ~P ran V ) | 
						
							| 169 | 168 | elpwid |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x C_ ran V ) | 
						
							| 170 |  | intimafv |  |-  ( ( Fun V /\ ( `' V " x ) C_ dom V ) -> |^| ( V " ( `' V " x ) ) = |^|_ l e. ( `' V " x ) ( V ` l ) ) | 
						
							| 171 | 19 44 170 | mp2an |  |-  |^| ( V " ( `' V " x ) ) = |^|_ l e. ( `' V " x ) ( V ` l ) | 
						
							| 172 |  | funimacnv |  |-  ( Fun V -> ( V " ( `' V " x ) ) = ( x i^i ran V ) ) | 
						
							| 173 | 19 172 | ax-mp |  |-  ( V " ( `' V " x ) ) = ( x i^i ran V ) | 
						
							| 174 |  | dfss2 |  |-  ( x C_ ran V <-> ( x i^i ran V ) = x ) | 
						
							| 175 | 174 | biimpi |  |-  ( x C_ ran V -> ( x i^i ran V ) = x ) | 
						
							| 176 | 173 175 | eqtrid |  |-  ( x C_ ran V -> ( V " ( `' V " x ) ) = x ) | 
						
							| 177 | 176 | inteqd |  |-  ( x C_ ran V -> |^| ( V " ( `' V " x ) ) = |^| x ) | 
						
							| 178 | 171 177 | eqtr3id |  |-  ( x C_ ran V -> |^|_ l e. ( `' V " x ) ( V ` l ) = |^| x ) | 
						
							| 179 | 169 178 | syl |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> |^|_ l e. ( `' V " x ) ( V ` l ) = |^| x ) | 
						
							| 180 | 44 | a1i |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( `' V " x ) C_ dom V ) | 
						
							| 181 | 180 53 | sseqtrdi |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( `' V " x ) C_ ( LIdeal ` R ) ) | 
						
							| 182 | 19 | a1i |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> Fun V ) | 
						
							| 183 |  | inteq |  |-  ( x = (/) -> |^| x = |^| (/) ) | 
						
							| 184 |  | int0 |  |-  |^| (/) = _V | 
						
							| 185 | 183 184 | eqtrdi |  |-  ( x = (/) -> |^| x = _V ) | 
						
							| 186 |  | vn0 |  |-  _V =/= (/) | 
						
							| 187 |  | neeq1 |  |-  ( |^| x = _V -> ( |^| x =/= (/) <-> _V =/= (/) ) ) | 
						
							| 188 | 186 187 | mpbiri |  |-  ( |^| x = _V -> |^| x =/= (/) ) | 
						
							| 189 | 185 188 | syl |  |-  ( x = (/) -> |^| x =/= (/) ) | 
						
							| 190 | 189 | necon2i |  |-  ( |^| x = (/) -> x =/= (/) ) | 
						
							| 191 | 190 | adantl |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x =/= (/) ) | 
						
							| 192 |  | preiman0 |  |-  ( ( Fun V /\ x C_ ran V /\ x =/= (/) ) -> ( `' V " x ) =/= (/) ) | 
						
							| 193 | 182 169 191 192 | syl3anc |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( `' V " x ) =/= (/) ) | 
						
							| 194 | 3 83 | zarclsiin |  |-  ( ( R e. Ring /\ ( `' V " x ) C_ ( LIdeal ` R ) /\ ( `' V " x ) =/= (/) ) -> |^|_ l e. ( `' V " x ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) ) | 
						
							| 195 | 49 181 193 194 | syl3anc |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> |^|_ l e. ( `' V " x ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) ) | 
						
							| 196 |  | simpr |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> |^| x = (/) ) | 
						
							| 197 | 179 195 196 | 3eqtr3d |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) = (/) ) | 
						
							| 198 | 181 | sselda |  |-  ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ l e. ( `' V " x ) ) -> l e. ( LIdeal ` R ) ) | 
						
							| 199 | 198 91 | syl |  |-  ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ l e. ( `' V " x ) ) -> l C_ ( Base ` R ) ) | 
						
							| 200 | 199 | ralrimiva |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> A. l e. ( `' V " x ) l C_ ( Base ` R ) ) | 
						
							| 201 |  | unissb |  |-  ( U. ( `' V " x ) C_ ( Base ` R ) <-> A. l e. ( `' V " x ) l C_ ( Base ` R ) ) | 
						
							| 202 | 200 201 | sylibr |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> U. ( `' V " x ) C_ ( Base ` R ) ) | 
						
							| 203 | 83 5 90 | rspcl |  |-  ( ( R e. Ring /\ U. ( `' V " x ) C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` U. ( `' V " x ) ) e. ( LIdeal ` R ) ) | 
						
							| 204 | 49 202 203 | syl2anc |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( RSpan ` R ) ` U. ( `' V " x ) ) e. ( LIdeal ` R ) ) | 
						
							| 205 | 3 5 | zarcls1 |  |-  ( ( R e. CRing /\ ( ( RSpan ` R ) ` U. ( `' V " x ) ) e. ( LIdeal ` R ) ) -> ( ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) = (/) <-> ( ( RSpan ` R ) ` U. ( `' V " x ) ) = ( Base ` R ) ) ) | 
						
							| 206 | 48 204 205 | syl2anc |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) = (/) <-> ( ( RSpan ` R ) ` U. ( `' V " x ) ) = ( Base ` R ) ) ) | 
						
							| 207 | 197 206 | mpbid |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( RSpan ` R ) ` U. ( `' V " x ) ) = ( Base ` R ) ) | 
						
							| 208 | 161 207 | eleqtrrd |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) | 
						
							| 209 | 83 5 57 140 49 181 | elrspunidl |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( `' V " x ) ) <-> E. a e. ( ( Base ` R ) ^m ( `' V " x ) ) ( a finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum a ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) ) ) | 
						
							| 210 | 208 209 | mpbid |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> E. a e. ( ( Base ` R ) ^m ( `' V " x ) ) ( a finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum a ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) ) | 
						
							| 211 | 159 210 | r19.29a |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) | 
						
							| 212 |  | 0ex |  |-  (/) e. _V | 
						
							| 213 |  | vex |  |-  x e. _V | 
						
							| 214 |  | elfi |  |-  ( ( (/) e. _V /\ x e. _V ) -> ( (/) e. ( fi ` x ) <-> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) ) | 
						
							| 215 | 212 213 214 | mp2an |  |-  ( (/) e. ( fi ` x ) <-> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) | 
						
							| 216 | 211 215 | sylibr |  |-  ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> (/) e. ( fi ` x ) ) | 
						
							| 217 | 216 | ex |  |-  ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) -> ( |^| x = (/) -> (/) e. ( fi ` x ) ) ) | 
						
							| 218 | 217 | necon3bd |  |-  ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) -> ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) | 
						
							| 219 | 218 | ralrimiva |  |-  ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) -> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) | 
						
							| 220 |  | cmpfi |  |-  ( J e. Top -> ( J e. Comp <-> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) | 
						
							| 221 | 220 | biimpar |  |-  ( ( J e. Top /\ A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) -> J e. Comp ) | 
						
							| 222 | 10 219 221 | syl2an2r |  |-  ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) -> J e. Comp ) | 
						
							| 223 | 9 222 | pm2.61dane |  |-  ( R e. CRing -> J e. Comp ) |