Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
|- S = ( Spec ` R ) |
2 |
|
zartop.2 |
|- J = ( TopOpen ` S ) |
3 |
|
zarcmplem.1 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
4 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
1 2 5
|
zar0ring |
|- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> J = { (/) } ) |
7 |
4 6
|
sylan |
|- ( ( R e. CRing /\ ( # ` ( Base ` R ) ) = 1 ) -> J = { (/) } ) |
8 |
|
0cmp |
|- { (/) } e. Comp |
9 |
7 8
|
eqeltrdi |
|- ( ( R e. CRing /\ ( # ` ( Base ` R ) ) = 1 ) -> J e. Comp ) |
10 |
1 2
|
zartop |
|- ( R e. CRing -> J e. Top ) |
11 |
|
fvex |
|- ( LIdeal ` R ) e. _V |
12 |
11
|
mptex |
|- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) e. _V |
13 |
3 12
|
eqeltri |
|- V e. _V |
14 |
|
imaexg |
|- ( V e. _V -> ( V " ( a supp ( 0g ` R ) ) ) e. _V ) |
15 |
13 14
|
mp1i |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. _V ) |
16 |
|
suppssdm |
|- ( a supp ( 0g ` R ) ) C_ dom a |
17 |
|
imass2 |
|- ( ( a supp ( 0g ` R ) ) C_ dom a -> ( V " ( a supp ( 0g ` R ) ) ) C_ ( V " dom a ) ) |
18 |
16 17
|
mp1i |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) C_ ( V " dom a ) ) |
19 |
3
|
funmpt2 |
|- Fun V |
20 |
|
ssidd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> dom a C_ dom a ) |
21 |
|
simpllr |
|- ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) |
22 |
|
fvexd |
|- ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( Base ` R ) e. _V ) |
23 |
13
|
cnvex |
|- `' V e. _V |
24 |
23
|
imaex |
|- ( `' V " x ) e. _V |
25 |
24
|
a1i |
|- ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( `' V " x ) e. _V ) |
26 |
22 25
|
elmapd |
|- ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( a e. ( ( Base ` R ) ^m ( `' V " x ) ) <-> a : ( `' V " x ) --> ( Base ` R ) ) ) |
27 |
21 26
|
mpbid |
|- ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> a : ( `' V " x ) --> ( Base ` R ) ) |
28 |
27
|
fdmd |
|- ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> dom a = ( `' V " x ) ) |
29 |
28
|
adantr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> dom a = ( `' V " x ) ) |
30 |
20 29
|
sseqtrd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> dom a C_ ( `' V " x ) ) |
31 |
|
funimass2 |
|- ( ( Fun V /\ dom a C_ ( `' V " x ) ) -> ( V " dom a ) C_ x ) |
32 |
19 30 31
|
sylancr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " dom a ) C_ x ) |
33 |
18 32
|
sstrd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) C_ x ) |
34 |
15 33
|
elpwd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. ~P x ) |
35 |
|
simpllr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> a finSupp ( 0g ` R ) ) |
36 |
35
|
fsuppimpd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) e. Fin ) |
37 |
|
imafi |
|- ( ( Fun V /\ ( a supp ( 0g ` R ) ) e. Fin ) -> ( V " ( a supp ( 0g ` R ) ) ) e. Fin ) |
38 |
19 36 37
|
sylancr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. Fin ) |
39 |
34 38
|
elind |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V " ( a supp ( 0g ` R ) ) ) e. ( ~P x i^i Fin ) ) |
40 |
|
inteq |
|- ( y = ( V " ( a supp ( 0g ` R ) ) ) -> |^| y = |^| ( V " ( a supp ( 0g ` R ) ) ) ) |
41 |
40
|
eqeq2d |
|- ( y = ( V " ( a supp ( 0g ` R ) ) ) -> ( (/) = |^| y <-> (/) = |^| ( V " ( a supp ( 0g ` R ) ) ) ) ) |
42 |
41
|
adantl |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ y = ( V " ( a supp ( 0g ` R ) ) ) ) -> ( (/) = |^| y <-> (/) = |^| ( V " ( a supp ( 0g ` R ) ) ) ) ) |
43 |
16 29
|
sseqtrid |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ ( `' V " x ) ) |
44 |
|
cnvimass |
|- ( `' V " x ) C_ dom V |
45 |
43 44
|
sstrdi |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ dom V ) |
46 |
|
intimafv |
|- ( ( Fun V /\ ( a supp ( 0g ` R ) ) C_ dom V ) -> |^| ( V " ( a supp ( 0g ` R ) ) ) = |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) ) |
47 |
19 45 46
|
sylancr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> |^| ( V " ( a supp ( 0g ` R ) ) ) = |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) ) |
48 |
|
simplll |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> R e. CRing ) |
49 |
48
|
crngringd |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> R e. Ring ) |
50 |
49
|
ad4antr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> R e. Ring ) |
51 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
52 |
51
|
rabex |
|- { j e. ( PrmIdeal ` R ) | i C_ j } e. _V |
53 |
52 3
|
dmmpti |
|- dom V = ( LIdeal ` R ) |
54 |
45 53
|
sseqtrdi |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ ( LIdeal ` R ) ) |
55 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( # ` ( Base ` R ) ) =/= 1 ) |
56 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( 1r ` R ) = ( R gsum a ) ) |
57 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
58 |
|
ringcmn |
|- ( R e. Ring -> R e. CMnd ) |
59 |
4 58
|
syl |
|- ( R e. CRing -> R e. CMnd ) |
60 |
59
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> R e. CMnd ) |
61 |
24
|
a1i |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( `' V " x ) e. _V ) |
62 |
27
|
ad2antrr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> a : ( `' V " x ) --> ( Base ` R ) ) |
63 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( a supp ( 0g ` R ) ) = (/) ) |
64 |
|
ssidd |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> (/) C_ (/) ) |
65 |
63 64
|
eqsstrd |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( a supp ( 0g ` R ) ) C_ (/) ) |
66 |
35
|
adantr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> a finSupp ( 0g ` R ) ) |
67 |
5 57 60 61 62 65 66
|
gsumres |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( R gsum ( a |` (/) ) ) = ( R gsum a ) ) |
68 |
|
res0 |
|- ( a |` (/) ) = (/) |
69 |
68
|
oveq2i |
|- ( R gsum ( a |` (/) ) ) = ( R gsum (/) ) |
70 |
57
|
gsum0 |
|- ( R gsum (/) ) = ( 0g ` R ) |
71 |
69 70
|
eqtri |
|- ( R gsum ( a |` (/) ) ) = ( 0g ` R ) |
72 |
67 71
|
eqtr3di |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( R gsum a ) = ( 0g ` R ) ) |
73 |
56 72
|
eqtr2d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( 0g ` R ) = ( 1r ` R ) ) |
74 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
75 |
5 57 74
|
01eq0ring |
|- ( ( R e. Ring /\ ( 0g ` R ) = ( 1r ` R ) ) -> ( Base ` R ) = { ( 0g ` R ) } ) |
76 |
50 73 75
|
syl2an2r |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( Base ` R ) = { ( 0g ` R ) } ) |
77 |
76
|
fveq2d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( # ` ( Base ` R ) ) = ( # ` { ( 0g ` R ) } ) ) |
78 |
|
fvex |
|- ( 0g ` R ) e. _V |
79 |
|
hashsng |
|- ( ( 0g ` R ) e. _V -> ( # ` { ( 0g ` R ) } ) = 1 ) |
80 |
78 79
|
ax-mp |
|- ( # ` { ( 0g ` R ) } ) = 1 |
81 |
77 80
|
eqtrdi |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ ( a supp ( 0g ` R ) ) = (/) ) -> ( # ` ( Base ` R ) ) = 1 ) |
82 |
55 81
|
mteqand |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) =/= (/) ) |
83 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
84 |
3 83
|
zarclsiin |
|- ( ( R e. Ring /\ ( a supp ( 0g ` R ) ) C_ ( LIdeal ` R ) /\ ( a supp ( 0g ` R ) ) =/= (/) ) -> |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) ) |
85 |
50 54 82 84
|
syl3anc |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> |^|_ l e. ( a supp ( 0g ` R ) ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) ) |
86 |
|
nfv |
|- F/ l ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) |
87 |
|
nfra1 |
|- F/ l A. l e. ( `' V " x ) ( a ` l ) e. l |
88 |
86 87
|
nfan |
|- F/ l ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) |
89 |
54
|
sselda |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ l e. ( a supp ( 0g ` R ) ) ) -> l e. ( LIdeal ` R ) ) |
90 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
91 |
5 90
|
lidlss |
|- ( l e. ( LIdeal ` R ) -> l C_ ( Base ` R ) ) |
92 |
89 91
|
syl |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ l e. ( a supp ( 0g ` R ) ) ) -> l C_ ( Base ` R ) ) |
93 |
92
|
ex |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( l e. ( a supp ( 0g ` R ) ) -> l C_ ( Base ` R ) ) ) |
94 |
88 93
|
ralrimi |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> A. l e. ( a supp ( 0g ` R ) ) l C_ ( Base ` R ) ) |
95 |
|
unissb |
|- ( U. ( a supp ( 0g ` R ) ) C_ ( Base ` R ) <-> A. l e. ( a supp ( 0g ` R ) ) l C_ ( Base ` R ) ) |
96 |
94 95
|
sylibr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> U. ( a supp ( 0g ` R ) ) C_ ( Base ` R ) ) |
97 |
83 5 90
|
rspcl |
|- ( ( R e. Ring /\ U. ( a supp ( 0g ` R ) ) C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) ) |
98 |
50 96 97
|
syl2anc |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) ) |
99 |
5 90
|
lidlss |
|- ( ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) C_ ( Base ` R ) ) |
100 |
98 99
|
syl |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) C_ ( Base ` R ) ) |
101 |
83 5 74
|
rsp1 |
|- ( R e. Ring -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) = ( Base ` R ) ) |
102 |
50 101
|
syl |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) = ( Base ` R ) ) |
103 |
27
|
adantr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> a : ( `' V " x ) --> ( Base ` R ) ) |
104 |
103 43
|
fssresd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a |` ( a supp ( 0g ` R ) ) ) : ( a supp ( 0g ` R ) ) --> ( Base ` R ) ) |
105 |
|
fvex |
|- ( Base ` R ) e. _V |
106 |
|
ovex |
|- ( a supp ( 0g ` R ) ) e. _V |
107 |
105 106
|
elmap |
|- ( ( a |` ( a supp ( 0g ` R ) ) ) e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) <-> ( a |` ( a supp ( 0g ` R ) ) ) : ( a supp ( 0g ` R ) ) --> ( Base ` R ) ) |
108 |
104 107
|
sylibr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a |` ( a supp ( 0g ` R ) ) ) e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) ) |
109 |
|
breq1 |
|- ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( b finSupp ( 0g ` R ) <-> ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) ) ) |
110 |
|
oveq2 |
|- ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( R gsum b ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) ) |
111 |
110
|
eqeq2d |
|- ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( ( 1r ` R ) = ( R gsum b ) <-> ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) ) ) |
112 |
|
fveq1 |
|- ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( b ` k ) = ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) ) |
113 |
112
|
eleq1d |
|- ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( ( b ` k ) e. k <-> ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) |
114 |
113
|
ralbidv |
|- ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k <-> A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) |
115 |
109 111 114
|
3anbi123d |
|- ( b = ( a |` ( a supp ( 0g ` R ) ) ) -> ( ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) <-> ( ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) /\ A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) ) |
116 |
115
|
adantl |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ b = ( a |` ( a supp ( 0g ` R ) ) ) ) -> ( ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) <-> ( ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) /\ A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) ) |
117 |
|
fvexd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 0g ` R ) e. _V ) |
118 |
35 117
|
fsuppres |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) ) |
119 |
|
simplr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 1r ` R ) = ( R gsum a ) ) |
120 |
50 58
|
syl |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> R e. CMnd ) |
121 |
24
|
a1i |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( `' V " x ) e. _V ) |
122 |
|
ssidd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a supp ( 0g ` R ) ) C_ ( a supp ( 0g ` R ) ) ) |
123 |
5 57 120 121 103 122 35
|
gsumres |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) = ( R gsum a ) ) |
124 |
119 123
|
eqtr4d |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) ) |
125 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> k e. ( a supp ( 0g ` R ) ) ) |
126 |
125
|
fvresd |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) = ( a ` k ) ) |
127 |
16 28
|
sseqtrid |
|- ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) -> ( a supp ( 0g ` R ) ) C_ ( `' V " x ) ) |
128 |
127
|
sselda |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) -> k e. ( `' V " x ) ) |
129 |
|
fveq2 |
|- ( l = k -> ( a ` l ) = ( a ` k ) ) |
130 |
|
id |
|- ( l = k -> l = k ) |
131 |
129 130
|
eleq12d |
|- ( l = k -> ( ( a ` l ) e. l <-> ( a ` k ) e. k ) ) |
132 |
131
|
adantl |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) /\ l = k ) -> ( ( a ` l ) e. l <-> ( a ` k ) e. k ) ) |
133 |
128 132
|
rspcdv |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( A. l e. ( `' V " x ) ( a ` l ) e. l -> ( a ` k ) e. k ) ) |
134 |
133
|
imp |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ k e. ( a supp ( 0g ` R ) ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( a ` k ) e. k ) |
135 |
134
|
an32s |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( a ` k ) e. k ) |
136 |
126 135
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) /\ k e. ( a supp ( 0g ` R ) ) ) -> ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) |
137 |
136
|
ralrimiva |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) |
138 |
118 124 137
|
3jca |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( a |` ( a supp ( 0g ` R ) ) ) finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum ( a |` ( a supp ( 0g ` R ) ) ) ) /\ A. k e. ( a supp ( 0g ` R ) ) ( ( a |` ( a supp ( 0g ` R ) ) ) ` k ) e. k ) ) |
139 |
108 116 138
|
rspcedvd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> E. b e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) ) |
140 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
141 |
83 5 57 140 50 54
|
elrspunidl |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) <-> E. b e. ( ( Base ` R ) ^m ( a supp ( 0g ` R ) ) ) ( b finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum b ) /\ A. k e. ( a supp ( 0g ` R ) ) ( b ` k ) e. k ) ) ) |
142 |
139 141
|
mpbird |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) |
143 |
142
|
snssd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> { ( 1r ` R ) } C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) |
144 |
83 90
|
rspssp |
|- ( ( R e. Ring /\ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) e. ( LIdeal ` R ) /\ { ( 1r ` R ) } C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) |
145 |
50 98 143 144
|
syl3anc |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) |
146 |
102 145
|
eqsstrrd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( Base ` R ) C_ ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) |
147 |
100 146
|
eqssd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) = ( Base ` R ) ) |
148 |
147
|
fveq2d |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) = ( V ` ( Base ` R ) ) ) |
149 |
90 5
|
lidl1 |
|- ( R e. Ring -> ( Base ` R ) e. ( LIdeal ` R ) ) |
150 |
4 149
|
syl |
|- ( R e. CRing -> ( Base ` R ) e. ( LIdeal ` R ) ) |
151 |
3 5
|
zarcls1 |
|- ( ( R e. CRing /\ ( Base ` R ) e. ( LIdeal ` R ) ) -> ( ( V ` ( Base ` R ) ) = (/) <-> ( Base ` R ) = ( Base ` R ) ) ) |
152 |
150 151
|
mpdan |
|- ( R e. CRing -> ( ( V ` ( Base ` R ) ) = (/) <-> ( Base ` R ) = ( Base ` R ) ) ) |
153 |
5 152
|
mpbiri |
|- ( R e. CRing -> ( V ` ( Base ` R ) ) = (/) ) |
154 |
153
|
ad7antr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V ` ( Base ` R ) ) = (/) ) |
155 |
148 154
|
eqtrd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> ( V ` ( ( RSpan ` R ) ` U. ( a supp ( 0g ` R ) ) ) ) = (/) ) |
156 |
47 85 155
|
3eqtrrd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> (/) = |^| ( V " ( a supp ( 0g ` R ) ) ) ) |
157 |
39 42 156
|
rspcedvd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ a finSupp ( 0g ` R ) ) /\ ( 1r ` R ) = ( R gsum a ) ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) |
158 |
157
|
exp41 |
|- ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) -> ( a finSupp ( 0g ` R ) -> ( ( 1r ` R ) = ( R gsum a ) -> ( A. l e. ( `' V " x ) ( a ` l ) e. l -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) ) ) ) |
159 |
158
|
3imp2 |
|- ( ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ a e. ( ( Base ` R ) ^m ( `' V " x ) ) ) /\ ( a finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum a ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) ) -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) |
160 |
5 74
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
161 |
49 160
|
syl |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
162 |
|
simplr |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x e. ~P ( Clsd ` J ) ) |
163 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
164 |
1 2 163 3
|
zartopn |
|- ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran V = ( Clsd ` J ) ) ) |
165 |
164
|
simprd |
|- ( R e. CRing -> ran V = ( Clsd ` J ) ) |
166 |
48 165
|
syl |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ran V = ( Clsd ` J ) ) |
167 |
166
|
pweqd |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ~P ran V = ~P ( Clsd ` J ) ) |
168 |
162 167
|
eleqtrrd |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x e. ~P ran V ) |
169 |
168
|
elpwid |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x C_ ran V ) |
170 |
|
intimafv |
|- ( ( Fun V /\ ( `' V " x ) C_ dom V ) -> |^| ( V " ( `' V " x ) ) = |^|_ l e. ( `' V " x ) ( V ` l ) ) |
171 |
19 44 170
|
mp2an |
|- |^| ( V " ( `' V " x ) ) = |^|_ l e. ( `' V " x ) ( V ` l ) |
172 |
|
funimacnv |
|- ( Fun V -> ( V " ( `' V " x ) ) = ( x i^i ran V ) ) |
173 |
19 172
|
ax-mp |
|- ( V " ( `' V " x ) ) = ( x i^i ran V ) |
174 |
|
df-ss |
|- ( x C_ ran V <-> ( x i^i ran V ) = x ) |
175 |
174
|
biimpi |
|- ( x C_ ran V -> ( x i^i ran V ) = x ) |
176 |
173 175
|
syl5eq |
|- ( x C_ ran V -> ( V " ( `' V " x ) ) = x ) |
177 |
176
|
inteqd |
|- ( x C_ ran V -> |^| ( V " ( `' V " x ) ) = |^| x ) |
178 |
171 177
|
eqtr3id |
|- ( x C_ ran V -> |^|_ l e. ( `' V " x ) ( V ` l ) = |^| x ) |
179 |
169 178
|
syl |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> |^|_ l e. ( `' V " x ) ( V ` l ) = |^| x ) |
180 |
44
|
a1i |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( `' V " x ) C_ dom V ) |
181 |
180 53
|
sseqtrdi |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( `' V " x ) C_ ( LIdeal ` R ) ) |
182 |
19
|
a1i |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> Fun V ) |
183 |
|
inteq |
|- ( x = (/) -> |^| x = |^| (/) ) |
184 |
|
int0 |
|- |^| (/) = _V |
185 |
183 184
|
eqtrdi |
|- ( x = (/) -> |^| x = _V ) |
186 |
|
vn0 |
|- _V =/= (/) |
187 |
|
neeq1 |
|- ( |^| x = _V -> ( |^| x =/= (/) <-> _V =/= (/) ) ) |
188 |
186 187
|
mpbiri |
|- ( |^| x = _V -> |^| x =/= (/) ) |
189 |
185 188
|
syl |
|- ( x = (/) -> |^| x =/= (/) ) |
190 |
189
|
necon2i |
|- ( |^| x = (/) -> x =/= (/) ) |
191 |
190
|
adantl |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> x =/= (/) ) |
192 |
|
preiman0 |
|- ( ( Fun V /\ x C_ ran V /\ x =/= (/) ) -> ( `' V " x ) =/= (/) ) |
193 |
182 169 191 192
|
syl3anc |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( `' V " x ) =/= (/) ) |
194 |
3 83
|
zarclsiin |
|- ( ( R e. Ring /\ ( `' V " x ) C_ ( LIdeal ` R ) /\ ( `' V " x ) =/= (/) ) -> |^|_ l e. ( `' V " x ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) ) |
195 |
49 181 193 194
|
syl3anc |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> |^|_ l e. ( `' V " x ) ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) ) |
196 |
|
simpr |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> |^| x = (/) ) |
197 |
179 195 196
|
3eqtr3d |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) = (/) ) |
198 |
181
|
sselda |
|- ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ l e. ( `' V " x ) ) -> l e. ( LIdeal ` R ) ) |
199 |
198 91
|
syl |
|- ( ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) /\ l e. ( `' V " x ) ) -> l C_ ( Base ` R ) ) |
200 |
199
|
ralrimiva |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> A. l e. ( `' V " x ) l C_ ( Base ` R ) ) |
201 |
|
unissb |
|- ( U. ( `' V " x ) C_ ( Base ` R ) <-> A. l e. ( `' V " x ) l C_ ( Base ` R ) ) |
202 |
200 201
|
sylibr |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> U. ( `' V " x ) C_ ( Base ` R ) ) |
203 |
83 5 90
|
rspcl |
|- ( ( R e. Ring /\ U. ( `' V " x ) C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` U. ( `' V " x ) ) e. ( LIdeal ` R ) ) |
204 |
49 202 203
|
syl2anc |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( RSpan ` R ) ` U. ( `' V " x ) ) e. ( LIdeal ` R ) ) |
205 |
3 5
|
zarcls1 |
|- ( ( R e. CRing /\ ( ( RSpan ` R ) ` U. ( `' V " x ) ) e. ( LIdeal ` R ) ) -> ( ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) = (/) <-> ( ( RSpan ` R ) ` U. ( `' V " x ) ) = ( Base ` R ) ) ) |
206 |
48 204 205
|
syl2anc |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( V ` ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) = (/) <-> ( ( RSpan ` R ) ` U. ( `' V " x ) ) = ( Base ` R ) ) ) |
207 |
197 206
|
mpbid |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( RSpan ` R ) ` U. ( `' V " x ) ) = ( Base ` R ) ) |
208 |
161 207
|
eleqtrrd |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( `' V " x ) ) ) |
209 |
83 5 57 140 49 181
|
elrspunidl |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> ( ( 1r ` R ) e. ( ( RSpan ` R ) ` U. ( `' V " x ) ) <-> E. a e. ( ( Base ` R ) ^m ( `' V " x ) ) ( a finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum a ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) ) ) |
210 |
208 209
|
mpbid |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> E. a e. ( ( Base ` R ) ^m ( `' V " x ) ) ( a finSupp ( 0g ` R ) /\ ( 1r ` R ) = ( R gsum a ) /\ A. l e. ( `' V " x ) ( a ` l ) e. l ) ) |
211 |
159 210
|
r19.29a |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) |
212 |
|
0ex |
|- (/) e. _V |
213 |
|
vex |
|- x e. _V |
214 |
|
elfi |
|- ( ( (/) e. _V /\ x e. _V ) -> ( (/) e. ( fi ` x ) <-> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) ) |
215 |
212 213 214
|
mp2an |
|- ( (/) e. ( fi ` x ) <-> E. y e. ( ~P x i^i Fin ) (/) = |^| y ) |
216 |
211 215
|
sylibr |
|- ( ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) /\ |^| x = (/) ) -> (/) e. ( fi ` x ) ) |
217 |
216
|
ex |
|- ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) -> ( |^| x = (/) -> (/) e. ( fi ` x ) ) ) |
218 |
217
|
necon3bd |
|- ( ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) /\ x e. ~P ( Clsd ` J ) ) -> ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) |
219 |
218
|
ralrimiva |
|- ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) -> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) |
220 |
|
cmpfi |
|- ( J e. Top -> ( J e. Comp <-> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) |
221 |
220
|
biimpar |
|- ( ( J e. Top /\ A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) -> J e. Comp ) |
222 |
10 219 221
|
syl2an2r |
|- ( ( R e. CRing /\ ( # ` ( Base ` R ) ) =/= 1 ) -> J e. Comp ) |
223 |
9 222
|
pm2.61dane |
|- ( R e. CRing -> J e. Comp ) |