Metamath Proof Explorer


Theorem zarcmp

Description: The Zariski topology is compact. Proposition 1.1.10(ii) of EGA, p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024)

Ref Expression
Hypotheses zartop.1 𝑆 = ( Spec ‘ 𝑅 )
zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
Assertion zarcmp ( 𝑅 ∈ CRing → 𝐽 ∈ Comp )

Proof

Step Hyp Ref Expression
1 zartop.1 𝑆 = ( Spec ‘ 𝑅 )
2 zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
3 sseq1 ( 𝑖 = 𝑘 → ( 𝑖𝑗𝑘𝑗 ) )
4 3 rabbidv ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
5 sseq2 ( 𝑗 = 𝑙 → ( 𝑘𝑗𝑘𝑙 ) )
6 5 cbvrabv { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑙 }
7 4 6 eqtrdi ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑙 } )
8 7 cbvmptv ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑙 } )
9 1 2 8 zarcmplem ( 𝑅 ∈ CRing → 𝐽 ∈ Comp )