| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | zartop.2 | ⊢ 𝐽  =  ( TopOpen ‘ 𝑆 ) | 
						
							| 3 |  | sseq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  ⊆  𝑗  ↔  𝑘  ⊆  𝑗 ) ) | 
						
							| 4 | 3 | rabbidv | ⊢ ( 𝑖  =  𝑘  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 5 |  | sseq2 | ⊢ ( 𝑗  =  𝑙  →  ( 𝑘  ⊆  𝑗  ↔  𝑘  ⊆  𝑙 ) ) | 
						
							| 6 | 5 | cbvrabv | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 }  =  { 𝑙  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑙 } | 
						
							| 7 | 4 6 | eqtrdi | ⊢ ( 𝑖  =  𝑘  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑙  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑙 } ) | 
						
							| 8 | 7 | cbvmptv | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } )  =  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑙  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑙 } ) | 
						
							| 9 | 1 2 8 | zarcmplem | ⊢ ( 𝑅  ∈  CRing  →  𝐽  ∈  Comp ) |