| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
| 2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
| 3 |
|
sseq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑗 ) ) |
| 4 |
3
|
rabbidv |
⊢ ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) |
| 5 |
|
sseq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝑘 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑙 ) ) |
| 6 |
5
|
cbvrabv |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑙 } |
| 7 |
4 6
|
eqtrdi |
⊢ ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑙 } ) |
| 8 |
7
|
cbvmptv |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑙 } ) |
| 9 |
1 2 8
|
zarcmplem |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ Comp ) |