Metamath Proof Explorer


Theorem zarcmp

Description: The Zariski topology is compact. Proposition 1.1.10(ii) of EGA, p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024)

Ref Expression
Hypotheses zartop.1 S = Spec R
zartop.2 J = TopOpen S
Assertion zarcmp R CRing J Comp

Proof

Step Hyp Ref Expression
1 zartop.1 S = Spec R
2 zartop.2 J = TopOpen S
3 sseq1 i = k i j k j
4 3 rabbidv i = k j PrmIdeal R | i j = j PrmIdeal R | k j
5 sseq2 j = l k j k l
6 5 cbvrabv j PrmIdeal R | k j = l PrmIdeal R | k l
7 4 6 eqtrdi i = k j PrmIdeal R | i j = l PrmIdeal R | k l
8 7 cbvmptv i LIdeal R j PrmIdeal R | i j = k LIdeal R l PrmIdeal R | k l
9 1 2 8 zarcmplem R CRing J Comp