Metamath Proof Explorer


Theorem zarcmp

Description: The Zariski topology is compact. Proposition 1.1.10(ii) of EGA, p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024)

Ref Expression
Hypotheses zartop.1 No typesetting found for |- S = ( Spec ` R ) with typecode |-
zartop.2 J = TopOpen S
Assertion zarcmp R CRing J Comp

Proof

Step Hyp Ref Expression
1 zartop.1 Could not format S = ( Spec ` R ) : No typesetting found for |- S = ( Spec ` R ) with typecode |-
2 zartop.2 J = TopOpen S
3 sseq1 i = k i j k j
4 3 rabbidv Could not format ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) : No typesetting found for |- ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) with typecode |-
5 sseq2 j = l k j k l
6 5 cbvrabv Could not format { j e. ( PrmIdeal ` R ) | k C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l } : No typesetting found for |- { j e. ( PrmIdeal ` R ) | k C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l } with typecode |-
7 4 6 eqtrdi Could not format ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l } ) : No typesetting found for |- ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { l e. ( PrmIdeal ` R ) | k C_ l } ) with typecode |-
8 7 cbvmptv Could not format ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { l e. ( PrmIdeal ` R ) | k C_ l } ) : No typesetting found for |- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { l e. ( PrmIdeal ` R ) | k C_ l } ) with typecode |-
9 1 2 8 zarcmplem R CRing J Comp