Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
The non-unital ring of even integers
0even
Next ⟩
1neven
Metamath Proof Explorer
Ascii
Unicode
Theorem
0even
Description:
0 is an even integer.
(Contributed by
AV
, 11-Feb-2020)
Ref
Expression
Hypothesis
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
Assertion
0even
⊢
0
∈
E
Proof
Step
Hyp
Ref
Expression
1
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
2
0z
⊢
0
∈
ℤ
3
2cn
⊢
2
∈
ℂ
4
0zd
⊢
2
∈
ℂ
→
0
∈
ℤ
5
oveq2
⊢
x
=
0
→
2
⁢
x
=
2
⋅
0
6
5
eqeq2d
⊢
x
=
0
→
0
=
2
⁢
x
↔
0
=
2
⋅
0
7
6
adantl
⊢
2
∈
ℂ
∧
x
=
0
→
0
=
2
⁢
x
↔
0
=
2
⋅
0
8
mul01
⊢
2
∈
ℂ
→
2
⋅
0
=
0
9
8
eqcomd
⊢
2
∈
ℂ
→
0
=
2
⋅
0
10
4
7
9
rspcedvd
⊢
2
∈
ℂ
→
∃
x
∈
ℤ
0
=
2
⁢
x
11
3
10
ax-mp
⊢
∃
x
∈
ℤ
0
=
2
⁢
x
12
eqeq1
⊢
z
=
0
→
z
=
2
⁢
x
↔
0
=
2
⁢
x
13
12
rexbidv
⊢
z
=
0
→
∃
x
∈
ℤ
z
=
2
⁢
x
↔
∃
x
∈
ℤ
0
=
2
⁢
x
14
13
elrab
⊢
0
∈
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
↔
0
∈
ℤ
∧
∃
x
∈
ℤ
0
=
2
⁢
x
15
2
11
14
mpbir2an
⊢
0
∈
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
16
15
1
eleqtrri
⊢
0
∈
E