Metamath Proof Explorer


Theorem 0even

Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypothesis 2zrng.e E = z | x z = 2 x
Assertion 0even 0 E

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 0z 0
3 2cn 2
4 0zd 2 0
5 oveq2 x = 0 2 x = 2 0
6 5 eqeq2d x = 0 0 = 2 x 0 = 2 0
7 6 adantl 2 x = 0 0 = 2 x 0 = 2 0
8 mul01 2 2 0 = 0
9 8 eqcomd 2 0 = 2 0
10 4 7 9 rspcedvd 2 x 0 = 2 x
11 3 10 ax-mp x 0 = 2 x
12 eqeq1 z = 0 z = 2 x 0 = 2 x
13 12 rexbidv z = 0 x z = 2 x x 0 = 2 x
14 13 elrab 0 z | x z = 2 x 0 x 0 = 2 x
15 2 11 14 mpbir2an 0 z | x z = 2 x
16 15 1 eleqtrri 0 E