Metamath Proof Explorer


Theorem 0ntr

Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis clscld.1 X=J
Assertion 0ntr JTopXSXintJS=XS

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 ssdif0 XSXS=
3 eqss S=XSXXS
4 fveq2 S=XintJS=intJX
5 1 ntrtop JTopintJX=X
6 4 5 sylan9eqr JTopS=XintJS=X
7 6 eqeq1d JTopS=XintJS=X=
8 7 biimpd JTopS=XintJS=X=
9 8 ex JTopS=XintJS=X=
10 3 9 biimtrrid JTopSXXSintJS=X=
11 10 expd JTopSXXSintJS=X=
12 11 com34 JTopSXintJS=XSX=
13 12 imp32 JTopSXintJS=XSX=
14 2 13 biimtrrid JTopSXintJS=XS=X=
15 14 necon3d JTopSXintJS=XXS
16 15 imp JTopSXintJS=XXS
17 16 an32s JTopXSXintJS=XS