Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ringdif.b | |
|
0ringdif.0 | |
||
Assertion | 0ringdif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ringdif.b | |
|
2 | 0ringdif.0 | |
|
3 | eldif | |
|
4 | 1 | a1i | |
5 | 4 | fveqeq2d | |
6 | 1 2 | 0ring | |
7 | 6 | ex | |
8 | fveq2 | |
|
9 | 2 | fvexi | |
10 | hashsng | |
|
11 | 9 10 | ax-mp | |
12 | 8 11 | eqtrdi | |
13 | 7 12 | impbid1 | |
14 | 0ringnnzr | |
|
15 | 5 13 14 | 3bitr3rd | |
16 | 15 | pm5.32i | |
17 | 3 16 | bitri | |