Metamath Proof Explorer


Theorem 0ringdif

Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses 0ringdif.b B=BaseR
0ringdif.0 0˙=0R
Assertion 0ringdif RRingNzRingRRingB=0˙

Proof

Step Hyp Ref Expression
1 0ringdif.b B=BaseR
2 0ringdif.0 0˙=0R
3 eldif RRingNzRingRRing¬RNzRing
4 1 a1i RRingB=BaseR
5 4 fveqeq2d RRingB=1BaseR=1
6 1 2 0ring RRingB=1B=0˙
7 6 ex RRingB=1B=0˙
8 fveq2 B=0˙B=0˙
9 2 fvexi 0˙V
10 hashsng 0˙V0˙=1
11 9 10 ax-mp 0˙=1
12 8 11 eqtrdi B=0˙B=1
13 7 12 impbid1 RRingB=1B=0˙
14 0ringnnzr RRingBaseR=1¬RNzRing
15 5 13 14 3bitr3rd RRing¬RNzRingB=0˙
16 15 pm5.32i RRing¬RNzRingRRingB=0˙
17 3 16 bitri RRingNzRingRRingB=0˙