Metamath Proof Explorer


Theorem 0vfval

Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 0vfval.2 G=+vU
0vfval.5 Z=0vecU
Assertion 0vfval UVZ=GIdG

Proof

Step Hyp Ref Expression
1 0vfval.2 G=+vU
2 0vfval.5 Z=0vecU
3 elex UVUV
4 fo1st 1st:VontoV
5 fofn 1st:VontoV1stFnV
6 4 5 ax-mp 1stFnV
7 ssv ran1stV
8 fnco 1stFnV1stFnVran1stV1st1stFnV
9 6 6 7 8 mp3an 1st1stFnV
10 df-va +v=1st1st
11 10 fneq1i +vFnV1st1stFnV
12 9 11 mpbir +vFnV
13 fvco2 +vFnVUVGId+vU=GId+vU
14 12 13 mpan UVGId+vU=GId+vU
15 df-0v 0vec=GId+v
16 15 fveq1i 0vecU=GId+vU
17 2 16 eqtri Z=GId+vU
18 1 fveq2i GIdG=GId+vU
19 14 17 18 3eqtr4g UVZ=GIdG
20 3 19 syl UVZ=GIdG