Metamath Proof Explorer


Theorem 11gbo

Description: 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020)

Ref Expression
Assertion 11gbo 11GoldbachOdd

Proof

Step Hyp Ref Expression
1 6p5e11 6+5=11
2 6even 6Even
3 5odd 5Odd
4 epoo 6Even5Odd6+5Odd
5 2 3 4 mp2an 6+5Odd
6 1 5 eqeltrri 11Odd
7 3prm 3
8 5prm 5
9 3odd 3Odd
10 9 9 3 3pm3.2i 3Odd3Odd5Odd
11 gbpart11 11=3+3+5
12 10 11 pm3.2i 3Odd3Odd5Odd11=3+3+5
13 eleq1 r=5rOdd5Odd
14 13 3anbi3d r=53Odd3OddrOdd3Odd3Odd5Odd
15 oveq2 r=53+3+r=3+3+5
16 15 eqeq2d r=511=3+3+r11=3+3+5
17 14 16 anbi12d r=53Odd3OddrOdd11=3+3+r3Odd3Odd5Odd11=3+3+5
18 17 rspcev 53Odd3Odd5Odd11=3+3+5r3Odd3OddrOdd11=3+3+r
19 8 12 18 mp2an r3Odd3OddrOdd11=3+3+r
20 eleq1 p=3pOdd3Odd
21 20 3anbi1d p=3pOddqOddrOdd3OddqOddrOdd
22 oveq1 p=3p+q=3+q
23 22 oveq1d p=3p+q+r=3+q+r
24 23 eqeq2d p=311=p+q+r11=3+q+r
25 21 24 anbi12d p=3pOddqOddrOdd11=p+q+r3OddqOddrOdd11=3+q+r
26 25 rexbidv p=3rpOddqOddrOdd11=p+q+rr3OddqOddrOdd11=3+q+r
27 eleq1 q=3qOdd3Odd
28 27 3anbi2d q=33OddqOddrOdd3Odd3OddrOdd
29 oveq2 q=33+q=3+3
30 29 oveq1d q=33+q+r=3+3+r
31 30 eqeq2d q=311=3+q+r11=3+3+r
32 28 31 anbi12d q=33OddqOddrOdd11=3+q+r3Odd3OddrOdd11=3+3+r
33 32 rexbidv q=3r3OddqOddrOdd11=3+q+rr3Odd3OddrOdd11=3+3+r
34 26 33 rspc2ev 33r3Odd3OddrOdd11=3+3+rpqrpOddqOddrOdd11=p+q+r
35 7 7 19 34 mp3an pqrpOddqOddrOdd11=p+q+r
36 isgbo 11GoldbachOdd11OddpqrpOddqOddrOdd11=p+q+r
37 6 35 36 mpbir2an 11GoldbachOdd