Metamath Proof Explorer


Theorem 1arympt1fv

Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024)

Ref Expression
Hypothesis 1arympt1.f F = x X 0 A x 0
Assertion 1arympt1fv X V B X F 0 B = A B

Proof

Step Hyp Ref Expression
1 1arympt1.f F = x X 0 A x 0
2 1 a1i X V B X F = x X 0 A x 0
3 fveq1 x = 0 B x 0 = 0 B 0
4 3 adantl X V B X x = 0 B x 0 = 0 B 0
5 c0ex 0 V
6 5 a1i X V 0 V
7 6 anim1i X V B X 0 V B X
8 7 adantr X V B X x = 0 B 0 V B X
9 fvsng 0 V B X 0 B 0 = B
10 8 9 syl X V B X x = 0 B 0 B 0 = B
11 4 10 eqtrd X V B X x = 0 B x 0 = B
12 11 fveq2d X V B X x = 0 B A x 0 = A B
13 5 a1i X V B X 0 V
14 simpr X V B X B X
15 13 14 fsnd X V B X 0 B : 0 X
16 snex 0 V
17 16 a1i B X 0 V
18 elmapg X V 0 V 0 B X 0 0 B : 0 X
19 17 18 sylan2 X V B X 0 B X 0 0 B : 0 X
20 15 19 mpbird X V B X 0 B X 0
21 fvexd X V B X A B V
22 2 12 20 21 fvmptd X V B X F 0 B = A B