Metamath Proof Explorer


Theorem 1nprm

Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Fan Zheng, 3-Jul-2016)

Ref Expression
Assertion 1nprm ¬1

Proof

Step Hyp Ref Expression
1 1nn 1
2 eleq1 z=1z1
3 1 2 mpbiri z=1z
4 nnnn0 zz0
5 dvds1 z0z1z=1
6 4 5 syl zz1z=1
7 6 bicomd zz=1z1
8 3 7 biadanii z=1zz1
9 velsn z1z=1
10 breq1 n=zn1z1
11 10 elrab zn|n1zz1
12 8 9 11 3bitr4ri zn|n1z1
13 12 eqriv n|n1=1
14 1ex 1V
15 14 ensn1 11𝑜
16 13 15 eqbrtri n|n11𝑜
17 1sdom2 1𝑜2𝑜
18 ensdomtr n|n11𝑜1𝑜2𝑜n|n12𝑜
19 16 17 18 mp2an n|n12𝑜
20 sdomnen n|n12𝑜¬n|n12𝑜
21 19 20 ax-mp ¬n|n12𝑜
22 isprm 11n|n12𝑜
23 1 22 mpbiran 1n|n12𝑜
24 21 23 mtbir ¬1