Metamath Proof Explorer


Theorem 1pthond

Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypotheses 1wlkd.p P=⟨“XY”⟩
1wlkd.f F=⟨“J”⟩
1wlkd.x φXV
1wlkd.y φYV
1wlkd.l φX=YIJ=X
1wlkd.j φXYXYIJ
1wlkd.v V=VtxG
1wlkd.i I=iEdgG
Assertion 1pthond φFXPathsOnGYP

Proof

Step Hyp Ref Expression
1 1wlkd.p P=⟨“XY”⟩
2 1wlkd.f F=⟨“J”⟩
3 1wlkd.x φXV
4 1wlkd.y φYV
5 1wlkd.l φX=YIJ=X
6 1wlkd.j φXYXYIJ
7 1wlkd.v V=VtxG
8 1wlkd.i I=iEdgG
9 1 2 3 4 5 6 7 8 1wlkd φFWalksGP
10 1 fveq1i P0=⟨“XY”⟩0
11 s2fv0 XV⟨“XY”⟩0=X
12 10 11 eqtrid XVP0=X
13 3 12 syl φP0=X
14 2 fveq2i F=⟨“J”⟩
15 s1len ⟨“J”⟩=1
16 14 15 eqtri F=1
17 1 16 fveq12i PF=⟨“XY”⟩1
18 s2fv1 YV⟨“XY”⟩1=Y
19 4 18 syl φ⟨“XY”⟩1=Y
20 17 19 eqtrid φPF=Y
21 wlkv FWalksGPGVFVPV
22 3simpc GVFVPVFVPV
23 9 21 22 3syl φFVPV
24 3 4 23 jca31 φXVYVFVPV
25 7 iswlkon XVYVFVPVFXWalksOnGYPFWalksGPP0=XPF=Y
26 24 25 syl φFXWalksOnGYPFWalksGPP0=XPF=Y
27 9 13 20 26 mpbir3and φFXWalksOnGYP
28 1 2 3 4 5 6 7 8 1trld φFTrailsGP
29 7 istrlson XVYVFVPVFXTrailsOnGYPFXWalksOnGYPFTrailsGP
30 24 29 syl φFXTrailsOnGYPFXWalksOnGYPFTrailsGP
31 27 28 30 mpbir2and φFXTrailsOnGYP
32 1 2 3 4 5 6 7 8 1pthd φFPathsGP
33 3 adantl FVPVφXV
34 4 adantl FVPVφYV
35 simpl FVPVφFVPV
36 33 34 35 jca31 FVPVφXVYVFVPV
37 36 ex FVPVφXVYVFVPV
38 21 22 37 3syl FWalksGPφXVYVFVPV
39 9 38 mpcom φXVYVFVPV
40 7 ispthson XVYVFVPVFXPathsOnGYPFXTrailsOnGYPFPathsGP
41 39 40 syl φFXPathsOnGYPFXTrailsOnGYPFPathsGP
42 31 32 41 mpbir2and φFXPathsOnGYP