Metamath Proof Explorer


Theorem 1to3vfriswmgr

Description: Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v V=VtxG
3vfriswmgr.e E=EdgG
Assertion 1to3vfriswmgr AXV=AV=ABV=ABCGFriendGraphhVvVhvhE∃!wVhvwE

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v V=VtxG
2 3vfriswmgr.e E=EdgG
3 df-3or V=AV=ABV=ABCV=AV=ABV=ABC
4 1 2 1to2vfriswmgr AXV=AV=ABGFriendGraphhVvVhvhE∃!wVhvwE
5 4 expcom V=AV=ABAXGFriendGraphhVvVhvhE∃!wVhvwE
6 tppreq3 B=CABC=AB
7 6 eqeq2d B=CV=ABCV=AB
8 olc V=ABV=AV=AB
9 8 anim1ci V=ABAXAXV=AV=AB
10 9 4 syl V=ABAXGFriendGraphhVvVhvhE∃!wVhvwE
11 10 ex V=ABAXGFriendGraphhVvVhvhE∃!wVhvwE
12 7 11 syl6bi B=CV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
13 tpprceq3 ¬BVBACAB=CA
14 tprot CAB=ABC
15 14 eqeq1i CAB=CAABC=CA
16 15 biimpi CAB=CAABC=CA
17 prcom CA=AC
18 16 17 eqtrdi CAB=CAABC=AC
19 18 eqeq2d CAB=CAV=ABCV=AC
20 olc V=ACV=AV=AC
21 1 2 1to2vfriswmgr AXV=AV=ACGFriendGraphhVvVhvhE∃!wVhvwE
22 20 21 sylan2 AXV=ACGFriendGraphhVvVhvhE∃!wVhvwE
23 22 expcom V=ACAXGFriendGraphhVvVhvhE∃!wVhvwE
24 19 23 syl6bi CAB=CAV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
25 13 24 syl ¬BVBAV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
26 25 a1d ¬BVBABCV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
27 tpprceq3 ¬CVCABAC=BA
28 tpcoma BAC=ABC
29 28 eqeq1i BAC=BAABC=BA
30 29 biimpi BAC=BAABC=BA
31 prcom BA=AB
32 30 31 eqtrdi BAC=BAABC=AB
33 32 eqeq2d BAC=BAV=ABCV=AB
34 8 4 sylan2 AXV=ABGFriendGraphhVvVhvhE∃!wVhvwE
35 34 expcom V=ABAXGFriendGraphhVvVhvhE∃!wVhvwE
36 35 a1d V=ABBCAXGFriendGraphhVvVhvhE∃!wVhvwE
37 33 36 syl6bi BAC=BAV=ABCBCAXGFriendGraphhVvVhvhE∃!wVhvwE
38 27 37 syl ¬CVCAV=ABCBCAXGFriendGraphhVvVhvhE∃!wVhvwE
39 38 com23 ¬CVCABCV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
40 simpl BVBABV
41 simpl CVCACV
42 40 41 anim12i BVBACVCABVCV
43 42 ad2antrr BVBACVCABCV=ABCBVCV
44 43 anim1ci BVBACVCABCV=ABCAXAXBVCV
45 3anass AXBVCVAXBVCV
46 44 45 sylibr BVBACVCABCV=ABCAXAXBVCV
47 simpr BVBABA
48 47 necomd BVBAAB
49 simpr CVCACA
50 49 necomd CVCAAC
51 48 50 anim12i BVBACVCAABAC
52 51 anim1i BVBACVCABCABACBC
53 df-3an ABACBCABACBC
54 52 53 sylibr BVBACVCABCABACBC
55 54 ad2antrr BVBACVCABCV=ABCAXABACBC
56 simplr BVBACVCABCV=ABCAXV=ABC
57 1 2 3vfriswmgr AXBVCVABACBCV=ABCGFriendGraphhVvVhvhE∃!wVhvwE
58 46 55 56 57 syl3anc BVBACVCABCV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
59 58 exp41 BVBACVCABCV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
60 26 39 59 ecase BCV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
61 12 60 pm2.61ine V=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
62 5 61 jaoi V=AV=ABV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
63 3 62 sylbi V=AV=ABV=ABCAXGFriendGraphhVvVhvhE∃!wVhvwE
64 63 impcom AXV=AV=ABV=ABCGFriendGraphhVvVhvhE∃!wVhvwE