| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3vfriswmgr.v |
|
| 2 |
|
3vfriswmgr.e |
|
| 3 |
|
df-3or |
|
| 4 |
1 2
|
1to2vfriswmgr |
|
| 5 |
4
|
expcom |
|
| 6 |
|
tppreq3 |
|
| 7 |
6
|
eqeq2d |
|
| 8 |
|
olc |
|
| 9 |
8
|
anim1ci |
|
| 10 |
9 4
|
syl |
|
| 11 |
10
|
ex |
|
| 12 |
7 11
|
biimtrdi |
|
| 13 |
|
tpprceq3 |
|
| 14 |
|
tprot |
|
| 15 |
14
|
eqeq1i |
|
| 16 |
15
|
biimpi |
|
| 17 |
|
prcom |
|
| 18 |
16 17
|
eqtrdi |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
|
olc |
|
| 21 |
1 2
|
1to2vfriswmgr |
|
| 22 |
20 21
|
sylan2 |
|
| 23 |
22
|
expcom |
|
| 24 |
19 23
|
biimtrdi |
|
| 25 |
13 24
|
syl |
|
| 26 |
25
|
a1d |
|
| 27 |
|
tpprceq3 |
|
| 28 |
|
tpcoma |
|
| 29 |
28
|
eqeq1i |
|
| 30 |
29
|
biimpi |
|
| 31 |
|
prcom |
|
| 32 |
30 31
|
eqtrdi |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
8 4
|
sylan2 |
|
| 35 |
34
|
expcom |
|
| 36 |
35
|
a1d |
|
| 37 |
33 36
|
biimtrdi |
|
| 38 |
27 37
|
syl |
|
| 39 |
38
|
com23 |
|
| 40 |
|
simpl |
|
| 41 |
|
simpl |
|
| 42 |
40 41
|
anim12i |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
43
|
anim1ci |
|
| 45 |
|
3anass |
|
| 46 |
44 45
|
sylibr |
|
| 47 |
|
simpr |
|
| 48 |
47
|
necomd |
|
| 49 |
|
simpr |
|
| 50 |
49
|
necomd |
|
| 51 |
48 50
|
anim12i |
|
| 52 |
51
|
anim1i |
|
| 53 |
|
df-3an |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
|
simplr |
|
| 57 |
1 2
|
3vfriswmgr |
|
| 58 |
46 55 56 57
|
syl3anc |
|
| 59 |
58
|
exp41 |
|
| 60 |
26 39 59
|
ecase |
|
| 61 |
12 60
|
pm2.61ine |
|
| 62 |
5 61
|
jaoi |
|
| 63 |
3 62
|
sylbi |
|
| 64 |
63
|
impcom |
|