Metamath Proof Explorer


Theorem 3vfriswmgr

Description: Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v V=VtxG
3vfriswmgr.e E=EdgG
Assertion 3vfriswmgr AXBYCZABACBCV=ABCGFriendGraphhVvVhvhE∃!wVhvwE

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v V=VtxG
2 3vfriswmgr.e E=EdgG
3 frgrusgr GFriendGraphGUSGraph
4 1 2 frgr3v AXBYCZABACBCV=ABCGUSGraphGFriendGraphABEBCECAE
5 4 exp4b AXBYCZABACBCV=ABCGUSGraphGFriendGraphABEBCECAE
6 5 3imp1 AXBYCZABACBCV=ABCGUSGraphGFriendGraphABEBCECAE
7 prcom CA=AC
8 7 eleq1i CAEACE
9 8 biimpi CAEACE
10 9 3ad2ant3 ABEBCECAEACE
11 10 adantl AXBYCZABACBCV=ABCGUSGraphABEBCECAEACE
12 simpl11 AXBYCZABACBCV=ABCGUSGraphAX
13 simpl12 AXBYCZABACBCV=ABCGUSGraphBY
14 simp1 ABACBCAB
15 14 3ad2ant2 AXBYCZABACBCV=ABCAB
16 15 adantr AXBYCZABACBCV=ABCGUSGraphAB
17 12 13 16 3jca AXBYCZABACBCV=ABCGUSGraphAXBYAB
18 simp3 AXBYCZABACBCV=ABCV=ABC
19 18 anim1i AXBYCZABACBCV=ABCGUSGraphV=ABCGUSGraph
20 17 19 jca AXBYCZABACBCV=ABCGUSGraphAXBYABV=ABCGUSGraph
21 simp1 ABEBCECAEABE
22 1 2 3vfriswmgrlem AXBYABV=ABCGUSGraphABE∃!wABAwE
23 22 imp AXBYABV=ABCGUSGraphABE∃!wABAwE
24 20 21 23 syl2an AXBYCZABACBCV=ABCGUSGraphABEBCECAE∃!wABAwE
25 11 24 jca AXBYCZABACBCV=ABCGUSGraphABEBCECAEACE∃!wABAwE
26 simpr2 AXBYCZABACBCV=ABCGUSGraphABEBCECAEBCE
27 necom ABBA
28 27 biimpi ABBA
29 28 3ad2ant1 ABACBCBA
30 29 3ad2ant2 AXBYCZABACBCV=ABCBA
31 30 adantr AXBYCZABACBCV=ABCGUSGraphBA
32 13 12 31 3jca AXBYCZABACBCV=ABCGUSGraphBYAXBA
33 tpcoma ABC=BAC
34 18 33 eqtrdi AXBYCZABACBCV=ABCV=BAC
35 34 anim1i AXBYCZABACBCV=ABCGUSGraphV=BACGUSGraph
36 32 35 jca AXBYCZABACBCV=ABCGUSGraphBYAXBAV=BACGUSGraph
37 prcom AB=BA
38 37 eleq1i ABEBAE
39 38 biimpi ABEBAE
40 39 3ad2ant1 ABEBCECAEBAE
41 1 2 3vfriswmgrlem BYAXBAV=BACGUSGraphBAE∃!wBABwE
42 41 imp BYAXBAV=BACGUSGraphBAE∃!wBABwE
43 reueq1 AB=BA∃!wABBwE∃!wBABwE
44 37 43 ax-mp ∃!wABBwE∃!wBABwE
45 42 44 sylibr BYAXBAV=BACGUSGraphBAE∃!wABBwE
46 36 40 45 syl2an AXBYCZABACBCV=ABCGUSGraphABEBCECAE∃!wABBwE
47 26 46 jca AXBYCZABACBCV=ABCGUSGraphABEBCECAEBCE∃!wABBwE
48 25 47 jca AXBYCZABACBCV=ABCGUSGraphABEBCECAEACE∃!wABAwEBCE∃!wABBwE
49 preq1 v=AvC=AC
50 49 eleq1d v=AvCEACE
51 preq1 v=Avw=Aw
52 51 eleq1d v=AvwEAwE
53 52 reubidv v=A∃!wABvwE∃!wABAwE
54 50 53 anbi12d v=AvCE∃!wABvwEACE∃!wABAwE
55 preq1 v=BvC=BC
56 55 eleq1d v=BvCEBCE
57 preq1 v=Bvw=Bw
58 57 eleq1d v=BvwEBwE
59 58 reubidv v=B∃!wABvwE∃!wABBwE
60 56 59 anbi12d v=BvCE∃!wABvwEBCE∃!wABBwE
61 54 60 ralprg AXBYvABvCE∃!wABvwEACE∃!wABAwEBCE∃!wABBwE
62 61 3adant3 AXBYCZvABvCE∃!wABvwEACE∃!wABAwEBCE∃!wABBwE
63 62 3ad2ant1 AXBYCZABACBCV=ABCvABvCE∃!wABvwEACE∃!wABAwEBCE∃!wABBwE
64 63 adantr AXBYCZABACBCV=ABCGUSGraphvABvCE∃!wABvwEACE∃!wABAwEBCE∃!wABBwE
65 64 adantr AXBYCZABACBCV=ABCGUSGraphABEBCECAEvABvCE∃!wABvwEACE∃!wABAwEBCE∃!wABBwE
66 48 65 mpbird AXBYCZABACBCV=ABCGUSGraphABEBCECAEvABvCE∃!wABvwE
67 diftpsn3 ACBCABCC=AB
68 67 3adant1 ABACBCABCC=AB
69 reueq1 ABCC=AB∃!wABCCvwE∃!wABvwE
70 68 69 syl ABACBC∃!wABCCvwE∃!wABvwE
71 70 anbi2d ABACBCvCE∃!wABCCvwEvCE∃!wABvwE
72 68 71 raleqbidv ABACBCvABCCvCE∃!wABCCvwEvABvCE∃!wABvwE
73 72 3ad2ant2 AXBYCZABACBCV=ABCvABCCvCE∃!wABCCvwEvABvCE∃!wABvwE
74 73 adantr AXBYCZABACBCV=ABCGUSGraphvABCCvCE∃!wABCCvwEvABvCE∃!wABvwE
75 74 adantr AXBYCZABACBCV=ABCGUSGraphABEBCECAEvABCCvCE∃!wABCCvwEvABvCE∃!wABvwE
76 66 75 mpbird AXBYCZABACBCV=ABCGUSGraphABEBCECAEvABCCvCE∃!wABCCvwE
77 76 3mix3d AXBYCZABACBCV=ABCGUSGraphABEBCECAEvABCAvAE∃!wABCAvwEvABCBvBE∃!wABCBvwEvABCCvCE∃!wABCCvwE
78 sneq h=Ah=A
79 78 difeq2d h=AABCh=ABCA
80 preq2 h=Avh=vA
81 80 eleq1d h=AvhEvAE
82 reueq1 ABCh=ABCA∃!wABChvwE∃!wABCAvwE
83 79 82 syl h=A∃!wABChvwE∃!wABCAvwE
84 81 83 anbi12d h=AvhE∃!wABChvwEvAE∃!wABCAvwE
85 79 84 raleqbidv h=AvABChvhE∃!wABChvwEvABCAvAE∃!wABCAvwE
86 sneq h=Bh=B
87 86 difeq2d h=BABCh=ABCB
88 preq2 h=Bvh=vB
89 88 eleq1d h=BvhEvBE
90 reueq1 ABCh=ABCB∃!wABChvwE∃!wABCBvwE
91 87 90 syl h=B∃!wABChvwE∃!wABCBvwE
92 89 91 anbi12d h=BvhE∃!wABChvwEvBE∃!wABCBvwE
93 87 92 raleqbidv h=BvABChvhE∃!wABChvwEvABCBvBE∃!wABCBvwE
94 sneq h=Ch=C
95 94 difeq2d h=CABCh=ABCC
96 preq2 h=Cvh=vC
97 96 eleq1d h=CvhEvCE
98 reueq1 ABCh=ABCC∃!wABChvwE∃!wABCCvwE
99 95 98 syl h=C∃!wABChvwE∃!wABCCvwE
100 97 99 anbi12d h=CvhE∃!wABChvwEvCE∃!wABCCvwE
101 95 100 raleqbidv h=CvABChvhE∃!wABChvwEvABCCvCE∃!wABCCvwE
102 85 93 101 rextpg AXBYCZhABCvABChvhE∃!wABChvwEvABCAvAE∃!wABCAvwEvABCBvBE∃!wABCBvwEvABCCvCE∃!wABCCvwE
103 102 3ad2ant1 AXBYCZABACBCV=ABChABCvABChvhE∃!wABChvwEvABCAvAE∃!wABCAvwEvABCBvBE∃!wABCBvwEvABCCvCE∃!wABCCvwE
104 103 adantr AXBYCZABACBCV=ABCGUSGraphhABCvABChvhE∃!wABChvwEvABCAvAE∃!wABCAvwEvABCBvBE∃!wABCBvwEvABCCvCE∃!wABCCvwE
105 104 adantr AXBYCZABACBCV=ABCGUSGraphABEBCECAEhABCvABChvhE∃!wABChvwEvABCAvAE∃!wABCAvwEvABCBvBE∃!wABCBvwEvABCCvCE∃!wABCCvwE
106 77 105 mpbird AXBYCZABACBCV=ABCGUSGraphABEBCECAEhABCvABChvhE∃!wABChvwE
107 106 ex AXBYCZABACBCV=ABCGUSGraphABEBCECAEhABCvABChvhE∃!wABChvwE
108 6 107 sylbid AXBYCZABACBCV=ABCGUSGraphGFriendGraphhABCvABChvhE∃!wABChvwE
109 108 expcom GUSGraphAXBYCZABACBCV=ABCGFriendGraphhABCvABChvhE∃!wABChvwE
110 109 com23 GUSGraphGFriendGraphAXBYCZABACBCV=ABChABCvABChvhE∃!wABChvwE
111 3 110 mpcom GFriendGraphAXBYCZABACBCV=ABChABCvABChvhE∃!wABChvwE
112 111 com12 AXBYCZABACBCV=ABCGFriendGraphhABCvABChvhE∃!wABChvwE
113 difeq1 V=ABCVh=ABCh
114 reueq1 Vh=ABCh∃!wVhvwE∃!wABChvwE
115 113 114 syl V=ABC∃!wVhvwE∃!wABChvwE
116 115 anbi2d V=ABCvhE∃!wVhvwEvhE∃!wABChvwE
117 113 116 raleqbidv V=ABCvVhvhE∃!wVhvwEvABChvhE∃!wABChvwE
118 117 rexeqbi1dv V=ABChVvVhvhE∃!wVhvwEhABCvABChvhE∃!wABChvwE
119 118 imbi2d V=ABCGFriendGraphhVvVhvhE∃!wVhvwEGFriendGraphhABCvABChvhE∃!wABChvwE
120 119 3ad2ant3 AXBYCZABACBCV=ABCGFriendGraphhVvVhvhE∃!wVhvwEGFriendGraphhABCvABChvhE∃!wABChvwE
121 112 120 mpbird AXBYCZABACBCV=ABCGFriendGraphhVvVhvhE∃!wVhvwE