Metamath Proof Explorer


Theorem 3vfriswmgr

Description: Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v V = Vtx G
3vfriswmgr.e E = Edg G
Assertion 3vfriswmgr A X B Y C Z A B A C B C V = A B C G FriendGraph h V v V h v h E ∃! w V h v w E

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v V = Vtx G
2 3vfriswmgr.e E = Edg G
3 frgrusgr G FriendGraph G USGraph
4 1 2 frgr3v A X B Y C Z A B A C B C V = A B C G USGraph G FriendGraph A B E B C E C A E
5 4 exp4b A X B Y C Z A B A C B C V = A B C G USGraph G FriendGraph A B E B C E C A E
6 5 3imp1 A X B Y C Z A B A C B C V = A B C G USGraph G FriendGraph A B E B C E C A E
7 prcom C A = A C
8 7 eleq1i C A E A C E
9 8 biimpi C A E A C E
10 9 3ad2ant3 A B E B C E C A E A C E
11 10 adantl A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E A C E
12 simpl11 A X B Y C Z A B A C B C V = A B C G USGraph A X
13 simpl12 A X B Y C Z A B A C B C V = A B C G USGraph B Y
14 simp1 A B A C B C A B
15 14 3ad2ant2 A X B Y C Z A B A C B C V = A B C A B
16 15 adantr A X B Y C Z A B A C B C V = A B C G USGraph A B
17 12 13 16 3jca A X B Y C Z A B A C B C V = A B C G USGraph A X B Y A B
18 simp3 A X B Y C Z A B A C B C V = A B C V = A B C
19 18 anim1i A X B Y C Z A B A C B C V = A B C G USGraph V = A B C G USGraph
20 17 19 jca A X B Y C Z A B A C B C V = A B C G USGraph A X B Y A B V = A B C G USGraph
21 simp1 A B E B C E C A E A B E
22 1 2 3vfriswmgrlem A X B Y A B V = A B C G USGraph A B E ∃! w A B A w E
23 22 imp A X B Y A B V = A B C G USGraph A B E ∃! w A B A w E
24 20 21 23 syl2an A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E ∃! w A B A w E
25 11 24 jca A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E A C E ∃! w A B A w E
26 simpr2 A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E B C E
27 necom A B B A
28 27 biimpi A B B A
29 28 3ad2ant1 A B A C B C B A
30 29 3ad2ant2 A X B Y C Z A B A C B C V = A B C B A
31 30 adantr A X B Y C Z A B A C B C V = A B C G USGraph B A
32 13 12 31 3jca A X B Y C Z A B A C B C V = A B C G USGraph B Y A X B A
33 tpcoma A B C = B A C
34 18 33 eqtrdi A X B Y C Z A B A C B C V = A B C V = B A C
35 34 anim1i A X B Y C Z A B A C B C V = A B C G USGraph V = B A C G USGraph
36 32 35 jca A X B Y C Z A B A C B C V = A B C G USGraph B Y A X B A V = B A C G USGraph
37 prcom A B = B A
38 37 eleq1i A B E B A E
39 38 biimpi A B E B A E
40 39 3ad2ant1 A B E B C E C A E B A E
41 1 2 3vfriswmgrlem B Y A X B A V = B A C G USGraph B A E ∃! w B A B w E
42 41 imp B Y A X B A V = B A C G USGraph B A E ∃! w B A B w E
43 reueq1 A B = B A ∃! w A B B w E ∃! w B A B w E
44 37 43 ax-mp ∃! w A B B w E ∃! w B A B w E
45 42 44 sylibr B Y A X B A V = B A C G USGraph B A E ∃! w A B B w E
46 36 40 45 syl2an A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E ∃! w A B B w E
47 26 46 jca A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E B C E ∃! w A B B w E
48 25 47 jca A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E A C E ∃! w A B A w E B C E ∃! w A B B w E
49 preq1 v = A v C = A C
50 49 eleq1d v = A v C E A C E
51 preq1 v = A v w = A w
52 51 eleq1d v = A v w E A w E
53 52 reubidv v = A ∃! w A B v w E ∃! w A B A w E
54 50 53 anbi12d v = A v C E ∃! w A B v w E A C E ∃! w A B A w E
55 preq1 v = B v C = B C
56 55 eleq1d v = B v C E B C E
57 preq1 v = B v w = B w
58 57 eleq1d v = B v w E B w E
59 58 reubidv v = B ∃! w A B v w E ∃! w A B B w E
60 56 59 anbi12d v = B v C E ∃! w A B v w E B C E ∃! w A B B w E
61 54 60 ralprg A X B Y v A B v C E ∃! w A B v w E A C E ∃! w A B A w E B C E ∃! w A B B w E
62 61 3adant3 A X B Y C Z v A B v C E ∃! w A B v w E A C E ∃! w A B A w E B C E ∃! w A B B w E
63 62 3ad2ant1 A X B Y C Z A B A C B C V = A B C v A B v C E ∃! w A B v w E A C E ∃! w A B A w E B C E ∃! w A B B w E
64 63 adantr A X B Y C Z A B A C B C V = A B C G USGraph v A B v C E ∃! w A B v w E A C E ∃! w A B A w E B C E ∃! w A B B w E
65 64 adantr A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E v A B v C E ∃! w A B v w E A C E ∃! w A B A w E B C E ∃! w A B B w E
66 48 65 mpbird A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E v A B v C E ∃! w A B v w E
67 diftpsn3 A C B C A B C C = A B
68 67 3adant1 A B A C B C A B C C = A B
69 reueq1 A B C C = A B ∃! w A B C C v w E ∃! w A B v w E
70 68 69 syl A B A C B C ∃! w A B C C v w E ∃! w A B v w E
71 70 anbi2d A B A C B C v C E ∃! w A B C C v w E v C E ∃! w A B v w E
72 68 71 raleqbidv A B A C B C v A B C C v C E ∃! w A B C C v w E v A B v C E ∃! w A B v w E
73 72 3ad2ant2 A X B Y C Z A B A C B C V = A B C v A B C C v C E ∃! w A B C C v w E v A B v C E ∃! w A B v w E
74 73 adantr A X B Y C Z A B A C B C V = A B C G USGraph v A B C C v C E ∃! w A B C C v w E v A B v C E ∃! w A B v w E
75 74 adantr A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E v A B C C v C E ∃! w A B C C v w E v A B v C E ∃! w A B v w E
76 66 75 mpbird A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E v A B C C v C E ∃! w A B C C v w E
77 76 3mix3d A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E v A B C A v A E ∃! w A B C A v w E v A B C B v B E ∃! w A B C B v w E v A B C C v C E ∃! w A B C C v w E
78 sneq h = A h = A
79 78 difeq2d h = A A B C h = A B C A
80 preq2 h = A v h = v A
81 80 eleq1d h = A v h E v A E
82 reueq1 A B C h = A B C A ∃! w A B C h v w E ∃! w A B C A v w E
83 79 82 syl h = A ∃! w A B C h v w E ∃! w A B C A v w E
84 81 83 anbi12d h = A v h E ∃! w A B C h v w E v A E ∃! w A B C A v w E
85 79 84 raleqbidv h = A v A B C h v h E ∃! w A B C h v w E v A B C A v A E ∃! w A B C A v w E
86 sneq h = B h = B
87 86 difeq2d h = B A B C h = A B C B
88 preq2 h = B v h = v B
89 88 eleq1d h = B v h E v B E
90 reueq1 A B C h = A B C B ∃! w A B C h v w E ∃! w A B C B v w E
91 87 90 syl h = B ∃! w A B C h v w E ∃! w A B C B v w E
92 89 91 anbi12d h = B v h E ∃! w A B C h v w E v B E ∃! w A B C B v w E
93 87 92 raleqbidv h = B v A B C h v h E ∃! w A B C h v w E v A B C B v B E ∃! w A B C B v w E
94 sneq h = C h = C
95 94 difeq2d h = C A B C h = A B C C
96 preq2 h = C v h = v C
97 96 eleq1d h = C v h E v C E
98 reueq1 A B C h = A B C C ∃! w A B C h v w E ∃! w A B C C v w E
99 95 98 syl h = C ∃! w A B C h v w E ∃! w A B C C v w E
100 97 99 anbi12d h = C v h E ∃! w A B C h v w E v C E ∃! w A B C C v w E
101 95 100 raleqbidv h = C v A B C h v h E ∃! w A B C h v w E v A B C C v C E ∃! w A B C C v w E
102 85 93 101 rextpg A X B Y C Z h A B C v A B C h v h E ∃! w A B C h v w E v A B C A v A E ∃! w A B C A v w E v A B C B v B E ∃! w A B C B v w E v A B C C v C E ∃! w A B C C v w E
103 102 3ad2ant1 A X B Y C Z A B A C B C V = A B C h A B C v A B C h v h E ∃! w A B C h v w E v A B C A v A E ∃! w A B C A v w E v A B C B v B E ∃! w A B C B v w E v A B C C v C E ∃! w A B C C v w E
104 103 adantr A X B Y C Z A B A C B C V = A B C G USGraph h A B C v A B C h v h E ∃! w A B C h v w E v A B C A v A E ∃! w A B C A v w E v A B C B v B E ∃! w A B C B v w E v A B C C v C E ∃! w A B C C v w E
105 104 adantr A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E h A B C v A B C h v h E ∃! w A B C h v w E v A B C A v A E ∃! w A B C A v w E v A B C B v B E ∃! w A B C B v w E v A B C C v C E ∃! w A B C C v w E
106 77 105 mpbird A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E h A B C v A B C h v h E ∃! w A B C h v w E
107 106 ex A X B Y C Z A B A C B C V = A B C G USGraph A B E B C E C A E h A B C v A B C h v h E ∃! w A B C h v w E
108 6 107 sylbid A X B Y C Z A B A C B C V = A B C G USGraph G FriendGraph h A B C v A B C h v h E ∃! w A B C h v w E
109 108 expcom G USGraph A X B Y C Z A B A C B C V = A B C G FriendGraph h A B C v A B C h v h E ∃! w A B C h v w E
110 109 com23 G USGraph G FriendGraph A X B Y C Z A B A C B C V = A B C h A B C v A B C h v h E ∃! w A B C h v w E
111 3 110 mpcom G FriendGraph A X B Y C Z A B A C B C V = A B C h A B C v A B C h v h E ∃! w A B C h v w E
112 111 com12 A X B Y C Z A B A C B C V = A B C G FriendGraph h A B C v A B C h v h E ∃! w A B C h v w E
113 difeq1 V = A B C V h = A B C h
114 reueq1 V h = A B C h ∃! w V h v w E ∃! w A B C h v w E
115 113 114 syl V = A B C ∃! w V h v w E ∃! w A B C h v w E
116 115 anbi2d V = A B C v h E ∃! w V h v w E v h E ∃! w A B C h v w E
117 113 116 raleqbidv V = A B C v V h v h E ∃! w V h v w E v A B C h v h E ∃! w A B C h v w E
118 117 rexeqbi1dv V = A B C h V v V h v h E ∃! w V h v w E h A B C v A B C h v h E ∃! w A B C h v w E
119 118 imbi2d V = A B C G FriendGraph h V v V h v h E ∃! w V h v w E G FriendGraph h A B C v A B C h v h E ∃! w A B C h v w E
120 119 3ad2ant3 A X B Y C Z A B A C B C V = A B C G FriendGraph h V v V h v h E ∃! w V h v w E G FriendGraph h A B C v A B C h v h E ∃! w A B C h v w E
121 112 120 mpbird A X B Y C Z A B A C B C V = A B C G FriendGraph h V v V h v h E ∃! w V h v w E