Metamath Proof Explorer


Theorem 2f1fvneq

Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018)

Ref Expression
Assertion 2f1fvneq E:D1-1RF:C1-1DACBCABEFA=XEFB=YXY

Proof

Step Hyp Ref Expression
1 f1veqaeq F:C1-1DACBCFA=FBA=B
2 1 adantll E:D1-1RF:C1-1DACBCFA=FBA=B
3 2 necon3ad E:D1-1RF:C1-1DACBCAB¬FA=FB
4 3 3impia E:D1-1RF:C1-1DACBCAB¬FA=FB
5 simpll E:D1-1RF:C1-1DACBCE:D1-1R
6 f1f F:C1-1DF:CD
7 ffvelcdm F:CDACFAD
8 ffvelcdm F:CDBCFBD
9 7 8 anim12dan F:CDACBCFADFBD
10 9 ex F:CDACBCFADFBD
11 6 10 syl F:C1-1DACBCFADFBD
12 11 adantl E:D1-1RF:C1-1DACBCFADFBD
13 12 imp E:D1-1RF:C1-1DACBCFADFBD
14 f1veqaeq E:D1-1RFADFBDEFA=EFBFA=FB
15 5 13 14 syl2anc E:D1-1RF:C1-1DACBCEFA=EFBFA=FB
16 15 con3dimp E:D1-1RF:C1-1DACBC¬FA=FB¬EFA=EFB
17 eqeq12 EFA=XEFB=YEFA=EFBX=Y
18 17 notbid EFA=XEFB=Y¬EFA=EFB¬X=Y
19 neqne ¬X=YXY
20 18 19 biimtrdi EFA=XEFB=Y¬EFA=EFBXY
21 16 20 syl5com E:D1-1RF:C1-1DACBC¬FA=FBEFA=XEFB=YXY
22 21 ex E:D1-1RF:C1-1DACBC¬FA=FBEFA=XEFB=YXY
23 22 3adant3 E:D1-1RF:C1-1DACBCAB¬FA=FBEFA=XEFB=YXY
24 4 23 mpd E:D1-1RF:C1-1DACBCABEFA=XEFB=YXY