Metamath Proof Explorer


Theorem 2f1fvneq

Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018)

Ref Expression
Assertion 2f1fvneq E : D 1-1 R F : C 1-1 D A C B C A B E F A = X E F B = Y X Y

Proof

Step Hyp Ref Expression
1 f1veqaeq F : C 1-1 D A C B C F A = F B A = B
2 1 adantll E : D 1-1 R F : C 1-1 D A C B C F A = F B A = B
3 2 necon3ad E : D 1-1 R F : C 1-1 D A C B C A B ¬ F A = F B
4 3 3impia E : D 1-1 R F : C 1-1 D A C B C A B ¬ F A = F B
5 simpll E : D 1-1 R F : C 1-1 D A C B C E : D 1-1 R
6 f1f F : C 1-1 D F : C D
7 ffvelrn F : C D A C F A D
8 ffvelrn F : C D B C F B D
9 7 8 anim12dan F : C D A C B C F A D F B D
10 9 ex F : C D A C B C F A D F B D
11 6 10 syl F : C 1-1 D A C B C F A D F B D
12 11 adantl E : D 1-1 R F : C 1-1 D A C B C F A D F B D
13 12 imp E : D 1-1 R F : C 1-1 D A C B C F A D F B D
14 f1veqaeq E : D 1-1 R F A D F B D E F A = E F B F A = F B
15 5 13 14 syl2anc E : D 1-1 R F : C 1-1 D A C B C E F A = E F B F A = F B
16 15 con3dimp E : D 1-1 R F : C 1-1 D A C B C ¬ F A = F B ¬ E F A = E F B
17 eqeq12 E F A = X E F B = Y E F A = E F B X = Y
18 17 notbid E F A = X E F B = Y ¬ E F A = E F B ¬ X = Y
19 neqne ¬ X = Y X Y
20 18 19 syl6bi E F A = X E F B = Y ¬ E F A = E F B X Y
21 16 20 syl5com E : D 1-1 R F : C 1-1 D A C B C ¬ F A = F B E F A = X E F B = Y X Y
22 21 ex E : D 1-1 R F : C 1-1 D A C B C ¬ F A = F B E F A = X E F B = Y X Y
23 22 3adant3 E : D 1-1 R F : C 1-1 D A C B C A B ¬ F A = F B E F A = X E F B = Y X Y
24 4 23 mpd E : D 1-1 R F : C 1-1 D A C B C A B E F A = X E F B = Y X Y