Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2fvcoidd.f | |
|
2fvcoidd.g | |
||
2fvcoidd.i | |
||
Assertion | 2fvcoidd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fvcoidd.f | |
|
2 | 2fvcoidd.g | |
|
3 | 2fvcoidd.i | |
|
4 | fcompt | |
|
5 | 2 1 4 | syl2anc | |
6 | 2fveq3 | |
|
7 | id | |
|
8 | 6 7 | eqeq12d | |
9 | 8 | rspccv | |
10 | 3 9 | syl | |
11 | 10 | imp | |
12 | 11 | mpteq2dva | |
13 | mptresid | |
|
14 | 12 13 | eqtr4di | |
15 | 5 14 | eqtrd | |