Metamath Proof Explorer


Theorem 2fvcoidd

Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019)

Ref Expression
Hypotheses 2fvcoidd.f φF:AB
2fvcoidd.g φG:BA
2fvcoidd.i φaAGFa=a
Assertion 2fvcoidd φGF=IA

Proof

Step Hyp Ref Expression
1 2fvcoidd.f φF:AB
2 2fvcoidd.g φG:BA
3 2fvcoidd.i φaAGFa=a
4 fcompt G:BAF:ABGF=xAGFx
5 2 1 4 syl2anc φGF=xAGFx
6 2fveq3 a=xGFa=GFx
7 id a=xa=x
8 6 7 eqeq12d a=xGFa=aGFx=x
9 8 rspccv aAGFa=axAGFx=x
10 3 9 syl φxAGFx=x
11 10 imp φxAGFx=x
12 11 mpteq2dva φxAGFx=xAx
13 mptresid IA=xAx
14 12 13 eqtr4di φxAGFx=IA
15 5 14 eqtrd φGF=IA