| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satfv1fvfmla1.x |
|
| 2 |
|
simpll |
|
| 3 |
|
simplr |
|
| 4 |
|
simprl |
|
| 5 |
|
simprr |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
7
|
eqeq2d |
|
| 9 |
8
|
adantl |
|
| 10 |
1
|
a1i |
|
| 11 |
5 9 10
|
rspcedvd |
|
| 12 |
11
|
orcd |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
oveq1d |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
|
eqidd |
|
| 18 |
17 13
|
goaleq12d |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
16 19
|
orbi12d |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
23
|
rexbidv |
|
| 25 |
|
eqidd |
|
| 26 |
25 21
|
goaleq12d |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
24 27
|
orbi12d |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
eqeq2d |
|
| 32 |
31
|
rexbidv |
|
| 33 |
|
id |
|
| 34 |
|
eqidd |
|
| 35 |
33 34
|
goaleq12d |
|
| 36 |
35
|
eqeq2d |
|
| 37 |
32 36
|
orbi12d |
|
| 38 |
20 28 37
|
rspc3ev |
|
| 39 |
2 3 4 12 38
|
syl31anc |
|
| 40 |
1
|
ovexi |
|
| 41 |
|
eqeq1 |
|
| 42 |
41
|
rexbidv |
|
| 43 |
|
eqeq1 |
|
| 44 |
42 43
|
orbi12d |
|
| 45 |
44
|
rexbidv |
|
| 46 |
45
|
2rexbidv |
|
| 47 |
40 46
|
elab |
|
| 48 |
39 47
|
sylibr |
|
| 49 |
48
|
olcd |
|
| 50 |
|
elun |
|
| 51 |
49 50
|
sylibr |
|
| 52 |
|
fmla1 |
|
| 53 |
51 52
|
eleqtrrdi |
|