Metamath Proof Explorer


Theorem 2goelgoanfmla1

Description: Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023)

Ref Expression
Hypothesis satfv1fvfmla1.x X = I 𝑔 J 𝑔 K 𝑔 L
Assertion 2goelgoanfmla1 I ω J ω K ω L ω X Fmla 1 𝑜

Proof

Step Hyp Ref Expression
1 satfv1fvfmla1.x X = I 𝑔 J 𝑔 K 𝑔 L
2 simpll I ω J ω K ω L ω I ω
3 simplr I ω J ω K ω L ω J ω
4 simprl I ω J ω K ω L ω K ω
5 simprr I ω J ω K ω L ω L ω
6 oveq2 n = L K 𝑔 n = K 𝑔 L
7 6 oveq2d n = L I 𝑔 J 𝑔 K 𝑔 n = I 𝑔 J 𝑔 K 𝑔 L
8 7 eqeq2d n = L X = I 𝑔 J 𝑔 K 𝑔 n X = I 𝑔 J 𝑔 K 𝑔 L
9 8 adantl I ω J ω K ω L ω n = L X = I 𝑔 J 𝑔 K 𝑔 n X = I 𝑔 J 𝑔 K 𝑔 L
10 1 a1i I ω J ω K ω L ω X = I 𝑔 J 𝑔 K 𝑔 L
11 5 9 10 rspcedvd I ω J ω K ω L ω n ω X = I 𝑔 J 𝑔 K 𝑔 n
12 11 orcd I ω J ω K ω L ω n ω X = I 𝑔 J 𝑔 K 𝑔 n X = 𝑔 K I 𝑔 J
13 oveq1 i = I i 𝑔 j = I 𝑔 j
14 13 oveq1d i = I i 𝑔 j 𝑔 k 𝑔 n = I 𝑔 j 𝑔 k 𝑔 n
15 14 eqeq2d i = I X = i 𝑔 j 𝑔 k 𝑔 n X = I 𝑔 j 𝑔 k 𝑔 n
16 15 rexbidv i = I n ω X = i 𝑔 j 𝑔 k 𝑔 n n ω X = I 𝑔 j 𝑔 k 𝑔 n
17 eqidd i = I k = k
18 17 13 goaleq12d i = I 𝑔 k i 𝑔 j = 𝑔 k I 𝑔 j
19 18 eqeq2d i = I X = 𝑔 k i 𝑔 j X = 𝑔 k I 𝑔 j
20 16 19 orbi12d i = I n ω X = i 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k i 𝑔 j n ω X = I 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k I 𝑔 j
21 oveq2 j = J I 𝑔 j = I 𝑔 J
22 21 oveq1d j = J I 𝑔 j 𝑔 k 𝑔 n = I 𝑔 J 𝑔 k 𝑔 n
23 22 eqeq2d j = J X = I 𝑔 j 𝑔 k 𝑔 n X = I 𝑔 J 𝑔 k 𝑔 n
24 23 rexbidv j = J n ω X = I 𝑔 j 𝑔 k 𝑔 n n ω X = I 𝑔 J 𝑔 k 𝑔 n
25 eqidd j = J k = k
26 25 21 goaleq12d j = J 𝑔 k I 𝑔 j = 𝑔 k I 𝑔 J
27 26 eqeq2d j = J X = 𝑔 k I 𝑔 j X = 𝑔 k I 𝑔 J
28 24 27 orbi12d j = J n ω X = I 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k I 𝑔 j n ω X = I 𝑔 J 𝑔 k 𝑔 n X = 𝑔 k I 𝑔 J
29 oveq1 k = K k 𝑔 n = K 𝑔 n
30 29 oveq2d k = K I 𝑔 J 𝑔 k 𝑔 n = I 𝑔 J 𝑔 K 𝑔 n
31 30 eqeq2d k = K X = I 𝑔 J 𝑔 k 𝑔 n X = I 𝑔 J 𝑔 K 𝑔 n
32 31 rexbidv k = K n ω X = I 𝑔 J 𝑔 k 𝑔 n n ω X = I 𝑔 J 𝑔 K 𝑔 n
33 id k = K k = K
34 eqidd k = K I 𝑔 J = I 𝑔 J
35 33 34 goaleq12d k = K 𝑔 k I 𝑔 J = 𝑔 K I 𝑔 J
36 35 eqeq2d k = K X = 𝑔 k I 𝑔 J X = 𝑔 K I 𝑔 J
37 32 36 orbi12d k = K n ω X = I 𝑔 J 𝑔 k 𝑔 n X = 𝑔 k I 𝑔 J n ω X = I 𝑔 J 𝑔 K 𝑔 n X = 𝑔 K I 𝑔 J
38 20 28 37 rspc3ev I ω J ω K ω n ω X = I 𝑔 J 𝑔 K 𝑔 n X = 𝑔 K I 𝑔 J i ω j ω k ω n ω X = i 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k i 𝑔 j
39 2 3 4 12 38 syl31anc I ω J ω K ω L ω i ω j ω k ω n ω X = i 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k i 𝑔 j
40 1 ovexi X V
41 eqeq1 x = X x = i 𝑔 j 𝑔 k 𝑔 n X = i 𝑔 j 𝑔 k 𝑔 n
42 41 rexbidv x = X n ω x = i 𝑔 j 𝑔 k 𝑔 n n ω X = i 𝑔 j 𝑔 k 𝑔 n
43 eqeq1 x = X x = 𝑔 k i 𝑔 j X = 𝑔 k i 𝑔 j
44 42 43 orbi12d x = X n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j n ω X = i 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k i 𝑔 j
45 44 rexbidv x = X k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j k ω n ω X = i 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k i 𝑔 j
46 45 2rexbidv x = X i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j i ω j ω k ω n ω X = i 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k i 𝑔 j
47 40 46 elab X x | i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j i ω j ω k ω n ω X = i 𝑔 j 𝑔 k 𝑔 n X = 𝑔 k i 𝑔 j
48 39 47 sylibr I ω J ω K ω L ω X x | i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j
49 48 olcd I ω J ω K ω L ω X × ω × ω X x | i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j
50 elun X × ω × ω x | i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j X × ω × ω X x | i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j
51 49 50 sylibr I ω J ω K ω L ω X × ω × ω x | i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j
52 fmla1 Fmla 1 𝑜 = × ω × ω x | i ω j ω k ω n ω x = i 𝑔 j 𝑔 k 𝑔 n x = 𝑔 k i 𝑔 j
53 51 52 eleqtrrdi I ω J ω K ω L ω X Fmla 1 𝑜