Metamath Proof Explorer


Theorem 2leaddle2

Description: If two real numbers are less than a third real number, the sum of the real numbers is less than twice the third real number. (Contributed by Alexander van der Vekens, 21-May-2018)

Ref Expression
Assertion 2leaddle2 A B C A < C B < C A + B < 2 C

Proof

Step Hyp Ref Expression
1 readdcl A B A + B
2 1 3adant3 A B C A + B
3 readdcl C C C + C
4 3 anidms C C + C
5 4 3ad2ant3 A B C C + C
6 2re 2
7 remulcl 2 C 2 C
8 6 7 mpan C 2 C
9 8 3ad2ant3 A B C 2 C
10 2 5 9 3jca A B C A + B C + C 2 C
11 10 adantr A B C A < C B < C A + B C + C 2 C
12 id A B A B
13 12 3adant3 A B C A B
14 id C C
15 14 14 jca C C C
16 15 3ad2ant3 A B C C C
17 13 16 jca A B C A B C C
18 17 adantr A B C A < C B < C A B C C
19 simpr A B C A < C B < C A < C B < C
20 lt2add A B C C A < C B < C A + B < C + C
21 18 19 20 sylc A B C A < C B < C A + B < C + C
22 recn C C
23 22 2timesd C 2 C = C + C
24 8 leidd C 2 C 2 C
25 23 24 eqbrtrrd C C + C 2 C
26 25 3ad2ant3 A B C C + C 2 C
27 26 adantr A B C A < C B < C C + C 2 C
28 21 27 jca A B C A < C B < C A + B < C + C C + C 2 C
29 ltletr A + B C + C 2 C A + B < C + C C + C 2 C A + B < 2 C
30 11 28 29 sylc A B C A < C B < C A + B < 2 C
31 30 ex A B C A < C B < C A + B < 2 C