Metamath Proof Explorer


Theorem 2llnmeqat

Description: An atom equals the intersection of two majorizing lines. (Contributed by NM, 3-Apr-2013)

Ref Expression
Hypotheses 2llnmeqat.l ˙=K
2llnmeqat.m ˙=meetK
2llnmeqat.a A=AtomsK
2llnmeqat.n N=LLinesK
Assertion 2llnmeqat KHLXNYNPAXYP˙X˙YP=X˙Y

Proof

Step Hyp Ref Expression
1 2llnmeqat.l ˙=K
2 2llnmeqat.m ˙=meetK
3 2llnmeqat.a A=AtomsK
4 2llnmeqat.n N=LLinesK
5 simp3r KHLXNYNPAXYP˙X˙YP˙X˙Y
6 hlatl KHLKAtLat
7 6 3ad2ant1 KHLXNYNPAXYP˙X˙YKAtLat
8 simp23 KHLXNYNPAXYP˙X˙YPA
9 simp1 KHLXNYNPAXYP˙X˙YKHL
10 simp21 KHLXNYNPAXYP˙X˙YXN
11 simp22 KHLXNYNPAXYP˙X˙YYN
12 simp3l KHLXNYNPAXYP˙X˙YXY
13 hllat KHLKLat
14 13 3ad2ant1 KHLXNYNPAXYP˙X˙YKLat
15 eqid BaseK=BaseK
16 15 3 atbase PAPBaseK
17 8 16 syl KHLXNYNPAXYP˙X˙YPBaseK
18 15 4 llnbase XNXBaseK
19 10 18 syl KHLXNYNPAXYP˙X˙YXBaseK
20 15 4 llnbase YNYBaseK
21 11 20 syl KHLXNYNPAXYP˙X˙YYBaseK
22 15 1 2 latlem12 KLatPBaseKXBaseKYBaseKP˙XP˙YP˙X˙Y
23 14 17 19 21 22 syl13anc KHLXNYNPAXYP˙X˙YP˙XP˙YP˙X˙Y
24 5 23 mpbird KHLXNYNPAXYP˙X˙YP˙XP˙Y
25 eqid 0.K=0.K
26 1 2 25 3 4 2llnm4 KHLPAXNYNP˙XP˙YX˙Y0.K
27 9 8 10 11 24 26 syl131anc KHLXNYNPAXYP˙X˙YX˙Y0.K
28 2 25 3 4 2llnmat KHLXNYNXYX˙Y0.KX˙YA
29 9 10 11 12 27 28 syl32anc KHLXNYNPAXYP˙X˙YX˙YA
30 1 3 atcmp KAtLatPAX˙YAP˙X˙YP=X˙Y
31 7 8 29 30 syl3anc KHLXNYNPAXYP˙X˙YP˙X˙YP=X˙Y
32 5 31 mpbid KHLXNYNPAXYP˙X˙YP=X˙Y