Metamath Proof Explorer


Theorem 2ndcdisj2

Description: Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by Mario Carneiro, 9-Apr-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Assertion 2ndcdisj2 J2nd𝜔AJy*xAyxAω

Proof

Step Hyp Ref Expression
1 df-rmo *xAyx*xxAyx
2 1 albii y*xAyxy*xxAyx
3 undif2 A=A
4 omex ωV
5 peano1 ω
6 snssi ωω
7 5 6 ax-mp ω
8 ssdomg ωVωω
9 4 7 8 mp2 ω
10 id J2nd𝜔J2nd𝜔
11 ssdif AJAJ
12 dfss3 AJxAxJ
13 11 12 sylib AJxAxJ
14 eldifi xAxA
15 14 anim1i xAyxxAyx
16 15 moimi *xxAyx*xxAyx
17 16 alimi y*xxAyxy*xxAyx
18 df-rmo *xAyx*xxAyx
19 18 albii y*xAyxy*xxAyx
20 2ndcdisj J2nd𝜔xAxJy*xAyxAω
21 19 20 syl3an3br J2nd𝜔xAxJy*xxAyxAω
22 10 13 17 21 syl3an J2nd𝜔AJy*xxAyxAω
23 unctb ωAωAω
24 9 22 23 sylancr J2nd𝜔AJy*xxAyxAω
25 3 24 eqbrtrrid J2nd𝜔AJy*xxAyxAω
26 ctex AωAV
27 25 26 syl J2nd𝜔AJy*xxAyxAV
28 ssun2 AA
29 ssdomg AVAAAA
30 27 28 29 mpisyl J2nd𝜔AJy*xxAyxAA
31 domtr AAAωAω
32 30 25 31 syl2anc J2nd𝜔AJy*xxAyxAω
33 2 32 syl3an3b J2nd𝜔AJy*xAyxAω