Description: Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by Mario Carneiro, 9-Apr-2015) (Revised by NM, 17-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | 2ndcdisj2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo | |
|
2 | 1 | albii | |
3 | undif2 | |
|
4 | omex | |
|
5 | peano1 | |
|
6 | snssi | |
|
7 | 5 6 | ax-mp | |
8 | ssdomg | |
|
9 | 4 7 8 | mp2 | |
10 | id | |
|
11 | ssdif | |
|
12 | dfss3 | |
|
13 | 11 12 | sylib | |
14 | eldifi | |
|
15 | 14 | anim1i | |
16 | 15 | moimi | |
17 | 16 | alimi | |
18 | df-rmo | |
|
19 | 18 | albii | |
20 | 2ndcdisj | |
|
21 | 19 20 | syl3an3br | |
22 | 10 13 17 21 | syl3an | |
23 | unctb | |
|
24 | 9 22 23 | sylancr | |
25 | 3 24 | eqbrtrrid | |
26 | ctex | |
|
27 | 25 26 | syl | |
28 | ssun2 | |
|
29 | ssdomg | |
|
30 | 27 28 29 | mpisyl | |
31 | domtr | |
|
32 | 30 25 31 | syl2anc | |
33 | 2 32 | syl3an3b | |