Step |
Hyp |
Ref |
Expression |
1 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
3 |
|
undif2 |
⊢ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = ( { ∅ } ∪ 𝐴 ) |
4 |
|
omex |
⊢ ω ∈ V |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
|
snssi |
⊢ ( ∅ ∈ ω → { ∅ } ⊆ ω ) |
7 |
5 6
|
ax-mp |
⊢ { ∅ } ⊆ ω |
8 |
|
ssdomg |
⊢ ( ω ∈ V → ( { ∅ } ⊆ ω → { ∅ } ≼ ω ) ) |
9 |
4 7 8
|
mp2 |
⊢ { ∅ } ≼ ω |
10 |
|
id |
⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ 2ndω ) |
11 |
|
ssdif |
⊢ ( 𝐴 ⊆ 𝐽 → ( 𝐴 ∖ { ∅ } ) ⊆ ( 𝐽 ∖ { ∅ } ) ) |
12 |
|
dfss3 |
⊢ ( ( 𝐴 ∖ { ∅ } ) ⊆ ( 𝐽 ∖ { ∅ } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ) |
13 |
11 12
|
sylib |
⊢ ( 𝐴 ⊆ 𝐽 → ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ) |
14 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑥 ∈ 𝐴 ) |
15 |
14
|
anim1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
16 |
15
|
moimi |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) |
17 |
16
|
alimi |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) |
18 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑦 ∈ 𝑥 ↔ ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) |
19 |
18
|
albii |
⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) |
20 |
|
2ndcdisj |
⊢ ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑦 ∈ 𝑥 ) → ( 𝐴 ∖ { ∅ } ) ≼ ω ) |
21 |
19 20
|
syl3an3br |
⊢ ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐴 ∖ { ∅ } ) ≼ ω ) |
22 |
10 13 17 21
|
syl3an |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐴 ∖ { ∅ } ) ≼ ω ) |
23 |
|
unctb |
⊢ ( ( { ∅ } ≼ ω ∧ ( 𝐴 ∖ { ∅ } ) ≼ ω ) → ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) ≼ ω ) |
24 |
9 22 23
|
sylancr |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) ≼ ω ) |
25 |
3 24
|
eqbrtrrid |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( { ∅ } ∪ 𝐴 ) ≼ ω ) |
26 |
|
ctex |
⊢ ( ( { ∅ } ∪ 𝐴 ) ≼ ω → ( { ∅ } ∪ 𝐴 ) ∈ V ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( { ∅ } ∪ 𝐴 ) ∈ V ) |
28 |
|
ssun2 |
⊢ 𝐴 ⊆ ( { ∅ } ∪ 𝐴 ) |
29 |
|
ssdomg |
⊢ ( ( { ∅ } ∪ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( { ∅ } ∪ 𝐴 ) → 𝐴 ≼ ( { ∅ } ∪ 𝐴 ) ) ) |
30 |
27 28 29
|
mpisyl |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → 𝐴 ≼ ( { ∅ } ∪ 𝐴 ) ) |
31 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( { ∅ } ∪ 𝐴 ) ∧ ( { ∅ } ∪ 𝐴 ) ≼ ω ) → 𝐴 ≼ ω ) |
32 |
30 25 31
|
syl2anc |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → 𝐴 ≼ ω ) |
33 |
2 32
|
syl3an3b |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) → 𝐴 ≼ ω ) |