Metamath Proof Explorer


Theorem 2ndcrest

Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion 2ndcrest J2nd𝜔AVJ𝑡A2nd𝜔

Proof

Step Hyp Ref Expression
1 is2ndc J2nd𝜔xTopBasesxωtopGenx=J
2 simplr AVxTopBasesxωxTopBases
3 simpll AVxTopBasesxωAV
4 tgrest xTopBasesAVtopGenx𝑡A=topGenx𝑡A
5 2 3 4 syl2anc AVxTopBasesxωtopGenx𝑡A=topGenx𝑡A
6 restbas xTopBasesx𝑡ATopBases
7 6 ad2antlr AVxTopBasesxωx𝑡ATopBases
8 restval xTopBasesAVx𝑡A=ranyxyA
9 2 3 8 syl2anc AVxTopBasesxωx𝑡A=ranyxyA
10 1stcrestlem xωranyxyAω
11 10 adantl AVxTopBasesxωranyxyAω
12 9 11 eqbrtrd AVxTopBasesxωx𝑡Aω
13 2ndci x𝑡ATopBasesx𝑡AωtopGenx𝑡A2nd𝜔
14 7 12 13 syl2anc AVxTopBasesxωtopGenx𝑡A2nd𝜔
15 5 14 eqeltrrd AVxTopBasesxωtopGenx𝑡A2nd𝜔
16 oveq1 topGenx=JtopGenx𝑡A=J𝑡A
17 16 eleq1d topGenx=JtopGenx𝑡A2nd𝜔J𝑡A2nd𝜔
18 15 17 syl5ibcom AVxTopBasesxωtopGenx=JJ𝑡A2nd𝜔
19 18 expimpd AVxTopBasesxωtopGenx=JJ𝑡A2nd𝜔
20 19 rexlimdva AVxTopBasesxωtopGenx=JJ𝑡A2nd𝜔
21 1 20 biimtrid AVJ2nd𝜔J𝑡A2nd𝜔
22 21 impcom J2nd𝜔AVJ𝑡A2nd𝜔