Metamath Proof Explorer


Theorem 2ndfval

Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T=C×cD
1stfval.b B=BaseT
1stfval.h H=HomT
1stfval.c φCCat
1stfval.d φDCat
2ndfval.p Q=C2ndFD
Assertion 2ndfval φQ=2ndBxB,yB2ndxHy

Proof

Step Hyp Ref Expression
1 1stfval.t T=C×cD
2 1stfval.b B=BaseT
3 1stfval.h H=HomT
4 1stfval.c φCCat
5 1stfval.d φDCat
6 2ndfval.p Q=C2ndFD
7 fvex BasecV
8 fvex BasedV
9 7 8 xpex Basec×BasedV
10 9 a1i c=Cd=DBasec×BasedV
11 simpl c=Cd=Dc=C
12 11 fveq2d c=Cd=DBasec=BaseC
13 simpr c=Cd=Dd=D
14 13 fveq2d c=Cd=DBased=BaseD
15 12 14 xpeq12d c=Cd=DBasec×Based=BaseC×BaseD
16 eqid BaseC=BaseC
17 eqid BaseD=BaseD
18 1 16 17 xpcbas BaseC×BaseD=BaseT
19 18 2 eqtr4i BaseC×BaseD=B
20 15 19 eqtrdi c=Cd=DBasec×Based=B
21 simpr c=Cd=Db=Bb=B
22 21 reseq2d c=Cd=Db=B2ndb=2ndB
23 simpll c=Cd=Db=Bc=C
24 simplr c=Cd=Db=Bd=D
25 23 24 oveq12d c=Cd=Db=Bc×cd=C×cD
26 25 1 eqtr4di c=Cd=Db=Bc×cd=T
27 26 fveq2d c=Cd=Db=BHomc×cd=HomT
28 27 3 eqtr4di c=Cd=Db=BHomc×cd=H
29 28 oveqd c=Cd=Db=BxHomc×cdy=xHy
30 29 reseq2d c=Cd=Db=B2ndxHomc×cdy=2ndxHy
31 21 21 30 mpoeq123dv c=Cd=Db=Bxb,yb2ndxHomc×cdy=xB,yB2ndxHy
32 22 31 opeq12d c=Cd=Db=B2ndbxb,yb2ndxHomc×cdy=2ndBxB,yB2ndxHy
33 10 20 32 csbied2 c=Cd=DBasec×Based/b2ndbxb,yb2ndxHomc×cdy=2ndBxB,yB2ndxHy
34 df-2ndf 2ndF=cCat,dCatBasec×Based/b2ndbxb,yb2ndxHomc×cdy
35 opex 2ndBxB,yB2ndxHyV
36 33 34 35 ovmpoa CCatDCatC2ndFD=2ndBxB,yB2ndxHy
37 4 5 36 syl2anc φC2ndFD=2ndBxB,yB2ndxHy
38 6 37 eqtrid φQ=2ndBxB,yB2ndxHy