Description: There exists at most one decomposition of a prime as a sum of two squares. See 2sqb for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sqmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfre1 | |
|
3 | 1 2 | nfan | |
4 | nfv | |
|
5 | 3 4 | nfan | |
6 | nfv | |
|
7 | 5 6 | nfan | |
8 | nfv | |
|
9 | 7 8 | nfan | |
10 | simp-8l | |
|
11 | simp-8r | |
|
12 | simpllr | |
|
13 | simp-7r | |
|
14 | simp-6r | |
|
15 | simplr | |
|
16 | simp-5r | |
|
17 | simpr | |
|
18 | simp-4r | |
|
19 | 10 11 12 13 14 15 16 17 18 | 2sqmod | |
20 | 19 | simpld | |
21 | 20 | anasss | |
22 | 21 | adantl5r | |
23 | simp-4r | |
|
24 | 9 22 23 | r19.29af | |
25 | 24 | anasss | |
26 | 25 | r19.29an | |
27 | 26 | expl | |
28 | 27 | ralrimiva | |
29 | 28 | ralrimiva | |
30 | breq12 | |
|
31 | simpl | |
|
32 | 31 | oveq1d | |
33 | simpr | |
|
34 | 33 | oveq1d | |
35 | 32 34 | oveq12d | |
36 | 35 | eqeq1d | |
37 | 30 36 | anbi12d | |
38 | 37 | cbvrexdva | |
39 | 38 | rmo4 | |
40 | 29 39 | sylibr | |