Metamath Proof Explorer


Theorem 2sqmo

Description: There exists at most one decomposition of a prime as a sum of two squares. See 2sqb for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Assertion 2sqmo P*a0b0aba2+b2=P

Proof

Step Hyp Ref Expression
1 nfv bPa0c0
2 nfre1 bb0aba2+b2=P
3 1 2 nfan bPa0c0b0aba2+b2=P
4 nfv bd0
5 3 4 nfan bPa0c0b0aba2+b2=Pd0
6 nfv bcd
7 5 6 nfan bPa0c0b0aba2+b2=Pd0cd
8 nfv bc2+d2=P
9 7 8 nfan bPa0c0b0aba2+b2=Pd0cdc2+d2=P
10 simp-8l Pa0c0d0cdc2+d2=Pb0aba2+b2=PP
11 simp-8r Pa0c0d0cdc2+d2=Pb0aba2+b2=Pa0
12 simpllr Pa0c0d0cdc2+d2=Pb0aba2+b2=Pb0
13 simp-7r Pa0c0d0cdc2+d2=Pb0aba2+b2=Pc0
14 simp-6r Pa0c0d0cdc2+d2=Pb0aba2+b2=Pd0
15 simplr Pa0c0d0cdc2+d2=Pb0aba2+b2=Pab
16 simp-5r Pa0c0d0cdc2+d2=Pb0aba2+b2=Pcd
17 simpr Pa0c0d0cdc2+d2=Pb0aba2+b2=Pa2+b2=P
18 simp-4r Pa0c0d0cdc2+d2=Pb0aba2+b2=Pc2+d2=P
19 10 11 12 13 14 15 16 17 18 2sqmod Pa0c0d0cdc2+d2=Pb0aba2+b2=Pa=cb=d
20 19 simpld Pa0c0d0cdc2+d2=Pb0aba2+b2=Pa=c
21 20 anasss Pa0c0d0cdc2+d2=Pb0aba2+b2=Pa=c
22 21 adantl5r Pa0c0b0aba2+b2=Pd0cdc2+d2=Pb0aba2+b2=Pa=c
23 simp-4r Pa0c0b0aba2+b2=Pd0cdc2+d2=Pb0aba2+b2=P
24 9 22 23 r19.29af Pa0c0b0aba2+b2=Pd0cdc2+d2=Pa=c
25 24 anasss Pa0c0b0aba2+b2=Pd0cdc2+d2=Pa=c
26 25 r19.29an Pa0c0b0aba2+b2=Pd0cdc2+d2=Pa=c
27 26 expl Pa0c0b0aba2+b2=Pd0cdc2+d2=Pa=c
28 27 ralrimiva Pa0c0b0aba2+b2=Pd0cdc2+d2=Pa=c
29 28 ralrimiva Pa0c0b0aba2+b2=Pd0cdc2+d2=Pa=c
30 breq12 a=cb=dabcd
31 simpl a=cb=da=c
32 31 oveq1d a=cb=da2=c2
33 simpr a=cb=db=d
34 33 oveq1d a=cb=db2=d2
35 32 34 oveq12d a=cb=da2+b2=c2+d2
36 35 eqeq1d a=cb=da2+b2=Pc2+d2=P
37 30 36 anbi12d a=cb=daba2+b2=Pcdc2+d2=P
38 37 cbvrexdva a=cb0aba2+b2=Pd0cdc2+d2=P
39 38 rmo4 *a0b0aba2+b2=Pa0c0b0aba2+b2=Pd0cdc2+d2=Pa=c
40 29 39 sylibr P*a0b0aba2+b2=P