| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
1
|
a1i |
|
| 3 |
|
id |
|
| 4 |
2 3
|
zmulcld |
|
| 5 |
4
|
peano2zd |
|
| 6 |
5
|
zred |
|
| 7 |
|
2rp |
|
| 8 |
7
|
a1i |
|
| 9 |
6 8
|
ge0divd |
|
| 10 |
4
|
zcnd |
|
| 11 |
|
1cnd |
|
| 12 |
|
2cnne0 |
|
| 13 |
12
|
a1i |
|
| 14 |
|
divdir |
|
| 15 |
10 11 13 14
|
syl3anc |
|
| 16 |
|
zcn |
|
| 17 |
|
2cnd |
|
| 18 |
|
2ne0 |
|
| 19 |
18
|
a1i |
|
| 20 |
16 17 19
|
divcan3d |
|
| 21 |
20
|
oveq1d |
|
| 22 |
15 21
|
eqtrd |
|
| 23 |
22
|
breq2d |
|
| 24 |
|
zre |
|
| 25 |
|
halfre |
|
| 26 |
25
|
a1i |
|
| 27 |
24 26
|
readdcld |
|
| 28 |
|
halfge0 |
|
| 29 |
24 26
|
addge01d |
|
| 30 |
28 29
|
mpbii |
|
| 31 |
|
1red |
|
| 32 |
|
halflt1 |
|
| 33 |
32
|
a1i |
|
| 34 |
26 31 24 33
|
ltadd2dd |
|
| 35 |
|
btwnzge0 |
|
| 36 |
27 3 30 34 35
|
syl22anc |
|
| 37 |
9 23 36
|
3bitrd |
|