Metamath Proof Explorer


Theorem 2zrngmsgrp

Description: R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zrngbas.r R=fld𝑠E
2zrngmmgm.1 M=mulGrpR
Assertion 2zrngmsgrp Could not format assertion : No typesetting found for |- M e. Smgrp with typecode |-

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zrngbas.r R=fld𝑠E
3 2zrngmmgm.1 M=mulGrpR
4 1 2 3 2zrngmmgm MMgm
5 elrabi az|xz=2xa
6 elrabi yz|xz=2xy
7 elrabi bz|xz=2xb
8 5 6 7 3anim123i az|xz=2xyz|xz=2xbz|xz=2xayb
9 zcn aa
10 zcn yy
11 zcn bb
12 9 10 11 3anim123i aybayb
13 mulass aybayb=ayb
14 8 12 13 3syl az|xz=2xyz|xz=2xbz|xz=2xayb=ayb
15 14 rgen3 az|xz=2xyz|xz=2xbz|xz=2xayb=ayb
16 1 2 2zrngbas E=BaseR
17 3 16 mgpbas E=BaseM
18 1 17 eqtr3i z|xz=2x=BaseM
19 1 2 2zrngmul ×=R
20 3 19 mgpplusg ×=+M
21 18 20 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a x. y ) x. b ) = ( a x. ( y x. b ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a x. y ) x. b ) = ( a x. ( y x. b ) ) ) ) with typecode |-
22 4 15 21 mpbir2an Could not format M e. Smgrp : No typesetting found for |- M e. Smgrp with typecode |-