Description: R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2zrng.e | |
|
2zrngbas.r | |
||
2zrngmmgm.1 | |
||
Assertion | 2zrngmsgrp | Could not format assertion : No typesetting found for |- M e. Smgrp with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | |
|
2 | 2zrngbas.r | |
|
3 | 2zrngmmgm.1 | |
|
4 | 1 2 3 | 2zrngmmgm | |
5 | elrabi | |
|
6 | elrabi | |
|
7 | elrabi | |
|
8 | 5 6 7 | 3anim123i | |
9 | zcn | |
|
10 | zcn | |
|
11 | zcn | |
|
12 | 9 10 11 | 3anim123i | |
13 | mulass | |
|
14 | 8 12 13 | 3syl | |
15 | 14 | rgen3 | |
16 | 1 2 | 2zrngbas | |
17 | 3 16 | mgpbas | |
18 | 1 17 | eqtr3i | |
19 | 1 2 | 2zrngmul | |
20 | 3 19 | mgpplusg | |
21 | 18 20 | issgrp | Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a x. y ) x. b ) = ( a x. ( y x. b ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a x. y ) x. b ) = ( a x. ( y x. b ) ) ) ) with typecode |- |
22 | 4 15 21 | mpbir2an | Could not format M e. Smgrp : No typesetting found for |- M e. Smgrp with typecode |- |