Metamath Proof Explorer


Theorem 341fppr2

Description: 341 is the (smallest)Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023)

Ref Expression
Assertion 341fppr2 341FPPr2

Proof

Step Hyp Ref Expression
1 4z 4
2 3nn0 30
3 4nn0 40
4 2 3 deccl 340
5 1nn 1
6 4 5 decnncl 341
7 6 nnzi 341
8 4nn 4
9 2 8 decnncl 34
10 1nn0 10
11 4re 4
12 9re 9
13 4lt9 4<9
14 11 12 13 ltleii 49
15 9 10 3 14 declei 4341
16 eluz2 341443414341
17 1 7 15 16 mpbir3an 3414
18 2z 2
19 10 5 decnncl 11
20 19 nnzi 11
21 2nn0 20
22 2re 2
23 2lt9 2<9
24 22 12 23 ltleii 29
25 5 10 21 24 declei 211
26 eluz2 112211211
27 18 20 25 26 mpbir3an 112
28 2 5 decnncl 31
29 28 nnzi 31
30 3nn 3
31 30 10 21 24 declei 231
32 eluz2 312231231
33 18 29 31 32 mpbir3an 312
34 nprm 112312¬1131
35 27 33 34 mp2an ¬1131
36 df-nel 341¬341
37 11t31e341 1131=341
38 37 eqcomi 341=1131
39 38 eleq1i 3411131
40 36 39 xchbinx 341¬1131
41 35 40 mpbir 341
42 eqid 341=341
43 eqid 34+1=34+1
44 1m1e0 11=0
45 4 10 10 42 43 44 decsubi 3411=340
46 45 oveq2i 23411=2340
47 46 oveq1i 23411mod341=2340mod341
48 2exp340mod341 2340mod341=1
49 47 48 eqtri 23411mod341=1
50 2nn 2
51 fpprel 2341FPPr2341434123411mod341=1
52 50 51 ax-mp 341FPPr2341434123411mod341=1
53 17 41 49 52 mpbir3an 341FPPr2