Metamath Proof Explorer


Theorem 3dimlem3a

Description: Lemma for 3dim3 . (Contributed by NM, 27-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dimlem3a KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙S¬T˙P˙Q˙R

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 simp31 KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙S¬T˙Q˙R˙S
5 simp11 KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SKHL
6 5 hllatd KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SKLat
7 simp13 KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SQA
8 eqid BaseK=BaseK
9 8 3 atbase QAQBaseK
10 7 9 syl KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SQBaseK
11 simp2l KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SRA
12 8 3 atbase RARBaseK
13 11 12 syl KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SRBaseK
14 simp12 KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SPA
15 8 3 atbase PAPBaseK
16 14 15 syl KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SPBaseK
17 8 1 latjrot KLatQBaseKRBaseKPBaseKQ˙R˙P=P˙Q˙R
18 6 10 13 16 17 syl13anc KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SQ˙R˙P=P˙Q˙R
19 simp33 KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SP˙Q˙R˙S
20 simp2r KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SSA
21 8 1 3 hlatjcl KHLQARAQ˙RBaseK
22 5 7 11 21 syl3anc KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SQ˙RBaseK
23 simp32 KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙S¬P˙Q˙R
24 8 2 1 3 hlexchb1 KHLPASAQ˙RBaseK¬P˙Q˙RP˙Q˙R˙SQ˙R˙P=Q˙R˙S
25 5 14 20 22 23 24 syl131anc KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SP˙Q˙R˙SQ˙R˙P=Q˙R˙S
26 19 25 mpbid KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SQ˙R˙P=Q˙R˙S
27 18 26 eqtr3d KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙SP˙Q˙R=Q˙R˙S
28 27 breq2d KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙ST˙P˙Q˙RT˙Q˙R˙S
29 4 28 mtbird KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙S¬T˙P˙Q˙R