Metamath Proof Explorer


Theorem 3exp4mod41

Description: 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020)

Ref Expression
Assertion 3exp4mod41 34mod41=-1mod41

Proof

Step Hyp Ref Expression
1 2p2e4 2+2=4
2 1 eqcomi 4=2+2
3 2 oveq2i 34=32+2
4 3cn 3
5 2nn0 20
6 expadd 3202032+2=3232
7 4 5 5 6 mp3an 32+2=3232
8 sq3 32=9
9 8 8 oveq12i 3232=99
10 9t9e81 99=81
11 9 10 eqtri 3232=81
12 3 7 11 3eqtri 34=81
13 12 oveq1i 34mod41=81mod41
14 dfdec10 81=108+1
15 4cn 4
16 2cn 2
17 4t2e8 42=8
18 15 16 17 mulcomli 24=8
19 18 eqcomi 8=24
20 19 oveq2i 108=1024
21 ax-1cn 1
22 16 21 negsubi 2+-1=21
23 2m1e1 21=1
24 22 23 eqtri 2+-1=1
25 24 eqcomi 1=2+-1
26 20 25 oveq12i 108+1=1024+2+-1
27 10nn 10
28 27 nncni 10
29 16 15 mulcli 24
30 28 29 mulcli 1024
31 neg1cn 1
32 30 16 31 addassi 1024+2+-1=1024+2+-1
33 28 15 mulcli 104
34 16 33 21 adddii 2104+1=2104+21
35 dfdec10 41=104+1
36 35 eqcomi 104+1=41
37 36 oveq2i 2104+1=241
38 16 28 15 mul12i 2104=1024
39 2t1e2 21=2
40 38 39 oveq12i 2104+21=1024+2
41 34 37 40 3eqtr3ri 1024+2=241
42 41 oveq1i 1024+2+-1=241+-1
43 26 32 42 3eqtr2i 108+1=241+-1
44 14 43 eqtri 81=241+-1
45 44 oveq1i 81mod41=241+-1mod41
46 4nn0 40
47 1nn 1
48 46 47 decnncl 41
49 48 nncni 41
50 16 49 mulcli 241
51 50 31 addcomi 241+-1=-1+241
52 51 oveq1i 241+-1mod41=-1+241mod41
53 neg1rr 1
54 nnrp 4141+
55 48 54 ax-mp 41+
56 2z 2
57 modcyc 141+2-1+241mod41=-1mod41
58 53 55 56 57 mp3an -1+241mod41=-1mod41
59 52 58 eqtri 241+-1mod41=-1mod41
60 13 45 59 3eqtri 34mod41=-1mod41