Metamath Proof Explorer


Theorem 3factsumint2

Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024)

Ref Expression
Hypotheses 3factsumint2.1 φxAF
3factsumint2.2 φkBG
3factsumint2.3 φxAkBH
Assertion 3factsumint2 φkBAFGHdx=kBAGFHdx

Proof

Step Hyp Ref Expression
1 3factsumint2.1 φxAF
2 3factsumint2.2 φkBG
3 3factsumint2.3 φxAkBH
4 1 adantlr φkBxAF
5 2 adantr φkBxAG
6 ancom xAkBkBxA
7 6 anbi2i φxAkBφkBxA
8 anass φkBxAφkBxA
9 8 bicomi φkBxAφkBxA
10 7 9 bitri φxAkBφkBxA
11 10 imbi1i φxAkBHφkBxAH
12 3 11 mpbi φkBxAH
13 4 5 12 mul12d φkBxAFGH=GFH
14 13 itgeq2dv φkBAFGHdx=AGFHdx
15 14 sumeq2dv φkBAFGHdx=kBAGFHdx