Metamath Proof Explorer


Theorem 3halfnz

Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020)

Ref Expression
Assertion 3halfnz ¬32

Proof

Step Hyp Ref Expression
1 1z 1
2 2cn 2
3 2 mullidi 12=2
4 2lt3 2<3
5 3 4 eqbrtri 12<3
6 1re 1
7 3re 3
8 2re 2
9 2pos 0<2
10 8 9 pm3.2i 20<2
11 ltmuldiv 1320<212<31<32
12 6 7 10 11 mp3an 12<31<32
13 5 12 mpbi 1<32
14 3lt4 3<4
15 2t2e4 22=4
16 15 breq2i 3<223<4
17 14 16 mpbir 3<22
18 1p1e2 1+1=2
19 18 breq2i 32<1+132<2
20 ltdivmul 3220<232<23<22
21 7 8 10 20 mp3an 32<23<22
22 19 21 bitri 32<1+13<22
23 17 22 mpbir 32<1+1
24 btwnnz 11<3232<1+1¬32
25 1 13 23 24 mp3an ¬32