Metamath Proof Explorer


Theorem 3lexlogpow5ineq4

Description: Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq4.1 φ X
3lexlogpow5ineq4.2 φ 3 X
Assertion 3lexlogpow5ineq4 φ 9 < log 2 X 5

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq4.1 φ X
2 3lexlogpow5ineq4.2 φ 3 X
3 9re 9
4 3 a1i φ 9
5 1nn0 1 0
6 1nn 1
7 5 6 decnncl 11
8 7 a1i φ 11
9 8 nnred φ 11
10 7re 7
11 10 a1i φ 7
12 0red φ 0
13 7pos 0 < 7
14 13 a1i φ 0 < 7
15 12 14 ltned φ 0 7
16 15 necomd φ 7 0
17 9 11 16 redivcld φ 11 7
18 5nn0 5 0
19 18 a1i φ 5 0
20 17 19 reexpcld φ 11 7 5
21 2re 2
22 21 a1i φ 2
23 2pos 0 < 2
24 23 a1i φ 0 < 2
25 3re 3
26 25 a1i φ 3
27 3pos 0 < 3
28 27 a1i φ 0 < 3
29 12 26 1 28 2 ltletrd φ 0 < X
30 1red φ 1
31 1lt2 1 < 2
32 31 a1i φ 1 < 2
33 30 32 ltned φ 1 2
34 33 necomd φ 2 1
35 22 24 1 29 34 relogbcld φ log 2 X
36 35 19 reexpcld φ log 2 X 5
37 3lexlogpow5ineq1 9 < 11 7 5
38 37 a1i φ 9 < 11 7 5
39 1 2 3lexlogpow5ineq2 φ 11 7 5 log 2 X 5
40 4 20 36 38 39 ltletrd φ 9 < log 2 X 5