Description: Lemma 2 for 41prothprm . (Contributed by AV, 5-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 41prothprm.p | |
|
Assertion | 41prothprmlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 41prothprm.p | |
|
2 | 1 | 41prothprmlem1 | |
3 | 2 | oveq2i | |
4 | 3 | oveq1i | |
5 | 5cn | |
|
6 | 4cn | |
|
7 | 5t4e20 | |
|
8 | 5 6 7 | mulcomli | |
9 | 8 | eqcomi | |
10 | 9 | oveq2i | |
11 | 3cn | |
|
12 | 4nn0 | |
|
13 | 5nn0 | |
|
14 | expmul | |
|
15 | 11 12 13 14 | mp3an | |
16 | 10 15 | eqtri | |
17 | 16 | oveq1i | |
18 | 3z | |
|
19 | zexpcl | |
|
20 | 18 12 19 | mp2an | |
21 | neg1z | |
|
22 | 20 21 | pm3.2i | |
23 | 1nn | |
|
24 | 12 23 | decnncl | |
25 | nnrp | |
|
26 | 24 25 | ax-mp | |
27 | 13 26 | pm3.2i | |
28 | 3exp4mod41 | |
|
29 | modexp | |
|
30 | 22 27 28 29 | mp3an | |
31 | 3p2e5 | |
|
32 | 31 | eqcomi | |
33 | 32 | oveq2i | |
34 | 2z | |
|
35 | m1expaddsub | |
|
36 | 18 34 35 | mp2an | |
37 | 36 | eqcomi | |
38 | 2cn | |
|
39 | ax-1cn | |
|
40 | 2p1e3 | |
|
41 | 11 38 39 40 | subaddrii | |
42 | 41 | oveq2i | |
43 | neg1cn | |
|
44 | exp1 | |
|
45 | 43 44 | ax-mp | |
46 | 42 45 | eqtri | |
47 | 33 37 46 | 3eqtri | |
48 | 47 | oveq1i | |
49 | 17 30 48 | 3eqtri | |
50 | 1 | oveq2i | |
51 | 1 | oveq2i | |
52 | 49 50 51 | 3eqtr4i | |
53 | 4 52 | eqtri | |