Metamath Proof Explorer


Theorem 41prothprmlem2

Description: Lemma 2 for 41prothprm . (Contributed by AV, 5-Jul-2020)

Ref Expression
Hypothesis 41prothprm.p P=41
Assertion 41prothprmlem2 3P12modP=-1modP

Proof

Step Hyp Ref Expression
1 41prothprm.p P=41
2 1 41prothprmlem1 P12=20
3 2 oveq2i 3P12=320
4 3 oveq1i 3P12modP=320modP
5 5cn 5
6 4cn 4
7 5t4e20 54=20
8 5 6 7 mulcomli 45=20
9 8 eqcomi 20=45
10 9 oveq2i 320=345
11 3cn 3
12 4nn0 40
13 5nn0 50
14 expmul 34050345=345
15 11 12 13 14 mp3an 345=345
16 10 15 eqtri 320=345
17 16 oveq1i 320mod41=345mod41
18 3z 3
19 zexpcl 34034
20 18 12 19 mp2an 34
21 neg1z 1
22 20 21 pm3.2i 341
23 1nn 1
24 12 23 decnncl 41
25 nnrp 4141+
26 24 25 ax-mp 41+
27 13 26 pm3.2i 5041+
28 3exp4mod41 34mod41=-1mod41
29 modexp 3415041+34mod41=-1mod41345mod41=15mod41
30 22 27 28 29 mp3an 345mod41=15mod41
31 3p2e5 3+2=5
32 31 eqcomi 5=3+2
33 32 oveq2i 15=13+2
34 2z 2
35 m1expaddsub 32132=13+2
36 18 34 35 mp2an 132=13+2
37 36 eqcomi 13+2=132
38 2cn 2
39 ax-1cn 1
40 2p1e3 2+1=3
41 11 38 39 40 subaddrii 32=1
42 41 oveq2i 132=11
43 neg1cn 1
44 exp1 111=1
45 43 44 ax-mp 11=1
46 42 45 eqtri 132=1
47 33 37 46 3eqtri 15=1
48 47 oveq1i 15mod41=-1mod41
49 17 30 48 3eqtri 320mod41=-1mod41
50 1 oveq2i 320modP=320mod41
51 1 oveq2i -1modP=-1mod41
52 49 50 51 3eqtr4i 320modP=-1modP
53 4 52 eqtri 3P12modP=-1modP