Metamath Proof Explorer


Theorem 4at

Description: Four atoms determine a lattice volume uniquely. Three-dimensional analogue of ps-1 and 3at . (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4at KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 1 2 3 4atlem12 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W
5 simp11 KHLPAQARASATAUAVAWAKHL
6 5 hllatd KHLPAQARASATAUAVAWAKLat
7 simp23 KHLPAQARASATAUAVAWATA
8 simp31 KHLPAQARASATAUAVAWAUA
9 eqid BaseK=BaseK
10 9 2 3 hlatjcl KHLTAUAT˙UBaseK
11 5 7 8 10 syl3anc KHLPAQARASATAUAVAWAT˙UBaseK
12 simp32 KHLPAQARASATAUAVAWAVA
13 simp33 KHLPAQARASATAUAVAWAWA
14 9 2 3 hlatjcl KHLVAWAV˙WBaseK
15 5 12 13 14 syl3anc KHLPAQARASATAUAVAWAV˙WBaseK
16 9 2 latjcl KLatT˙UBaseKV˙WBaseKT˙U˙V˙WBaseK
17 6 11 15 16 syl3anc KHLPAQARASATAUAVAWAT˙U˙V˙WBaseK
18 9 1 latref KLatT˙U˙V˙WBaseKT˙U˙V˙W˙T˙U˙V˙W
19 6 17 18 syl2anc KHLPAQARASATAUAVAWAT˙U˙V˙W˙T˙U˙V˙W
20 breq1 P˙Q˙R˙S=T˙U˙V˙WP˙Q˙R˙S˙T˙U˙V˙WT˙U˙V˙W˙T˙U˙V˙W
21 19 20 syl5ibrcom KHLPAQARASATAUAVAWAP˙Q˙R˙S=T˙U˙V˙WP˙Q˙R˙S˙T˙U˙V˙W
22 21 adantr KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=T˙U˙V˙WP˙Q˙R˙S˙T˙U˙V˙W
23 4 22 impbid KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W