Metamath Proof Explorer


Theorem 4at2

Description: Four atoms determine a lattice volume uniquely. (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4at2 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 1 2 3 4at KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W
5 simp11 KHLPAQARASATAUAVAWAKHL
6 5 hllatd KHLPAQARASATAUAVAWAKLat
7 eqid BaseK=BaseK
8 7 2 3 hlatjcl KHLPAQAP˙QBaseK
9 8 3ad2ant1 KHLPAQARASATAUAVAWAP˙QBaseK
10 simp21 KHLPAQARASATAUAVAWARA
11 7 3 atbase RARBaseK
12 10 11 syl KHLPAQARASATAUAVAWARBaseK
13 simp22 KHLPAQARASATAUAVAWASA
14 7 3 atbase SASBaseK
15 13 14 syl KHLPAQARASATAUAVAWASBaseK
16 7 2 latjass KLatP˙QBaseKRBaseKSBaseKP˙Q˙R˙S=P˙Q˙R˙S
17 6 9 12 15 16 syl13anc KHLPAQARASATAUAVAWAP˙Q˙R˙S=P˙Q˙R˙S
18 simp23 KHLPAQARASATAUAVAWATA
19 simp31 KHLPAQARASATAUAVAWAUA
20 7 2 3 hlatjcl KHLTAUAT˙UBaseK
21 5 18 19 20 syl3anc KHLPAQARASATAUAVAWAT˙UBaseK
22 simp32 KHLPAQARASATAUAVAWAVA
23 7 3 atbase VAVBaseK
24 22 23 syl KHLPAQARASATAUAVAWAVBaseK
25 simp33 KHLPAQARASATAUAVAWAWA
26 7 3 atbase WAWBaseK
27 25 26 syl KHLPAQARASATAUAVAWAWBaseK
28 7 2 latjass KLatT˙UBaseKVBaseKWBaseKT˙U˙V˙W=T˙U˙V˙W
29 6 21 24 27 28 syl13anc KHLPAQARASATAUAVAWAT˙U˙V˙W=T˙U˙V˙W
30 17 29 breq12d KHLPAQARASATAUAVAWAP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S˙T˙U˙V˙W
31 30 adantr KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S˙T˙U˙V˙W
32 17 29 eqeq12d KHLPAQARASATAUAVAWAP˙Q˙R˙S=T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W
33 32 adantr KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W
34 4 31 33 3bitr4d KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W