| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lplncvrlvol2.l |
|
| 2 |
|
lplncvrlvol2.c |
|
| 3 |
|
lplncvrlvol2.p |
|
| 4 |
|
lplncvrlvol2.v |
|
| 5 |
|
simpr |
|
| 6 |
|
simpl1 |
|
| 7 |
|
simpl3 |
|
| 8 |
3 4
|
lvolnelpln |
|
| 9 |
6 7 8
|
syl2anc |
|
| 10 |
|
simpl2 |
|
| 11 |
|
eleq1 |
|
| 12 |
10 11
|
syl5ibcom |
|
| 13 |
12
|
necon3bd |
|
| 14 |
9 13
|
mpd |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
pltval |
|
| 17 |
16
|
adantr |
|
| 18 |
5 14 17
|
mpbir2and |
|
| 19 |
|
simpl1 |
|
| 20 |
|
simpl2 |
|
| 21 |
|
eqid |
|
| 22 |
21 3
|
lplnbase |
|
| 23 |
20 22
|
syl |
|
| 24 |
|
simpl3 |
|
| 25 |
21 4
|
lvolbase |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
simpr |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
21 1 15 28 2 29
|
hlrelat3 |
|
| 31 |
19 23 26 27 30
|
syl31anc |
|
| 32 |
21 1 28 29 4
|
islvol2 |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simpr |
|
| 35 |
21 1 28 29 3
|
islpln2 |
|
| 36 |
|
simp3rl |
|
| 37 |
|
simp3rr |
|
| 38 |
|
simp133 |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
simp23 |
|
| 41 |
37 39 40
|
3brtr3d |
|
| 42 |
|
simp11 |
|
| 43 |
|
simp12 |
|
| 44 |
|
simp3l |
|
| 45 |
|
simp21l |
|
| 46 |
43 44 45
|
3jca |
|
| 47 |
|
simp21r |
|
| 48 |
|
simp22l |
|
| 49 |
|
simp22r |
|
| 50 |
47 48 49
|
3jca |
|
| 51 |
|
simp131 |
|
| 52 |
|
simp132 |
|
| 53 |
36 38 39
|
3brtr3d |
|
| 54 |
|
simp111 |
|
| 55 |
54
|
hllatd |
|
| 56 |
21 28 29
|
hlatjcl |
|
| 57 |
42 56
|
syl |
|
| 58 |
21 29
|
atbase |
|
| 59 |
43 58
|
syl |
|
| 60 |
21 28
|
latjcl |
|
| 61 |
55 57 59 60
|
syl3anc |
|
| 62 |
21 1 28 2 29
|
cvr1 |
|
| 63 |
54 61 44 62
|
syl3anc |
|
| 64 |
53 63
|
mpbird |
|
| 65 |
1 28 29
|
4at2 |
|
| 66 |
42 46 50 51 52 64 65
|
syl33anc |
|
| 67 |
41 66
|
mpbid |
|
| 68 |
67 39 40
|
3eqtr4d |
|
| 69 |
36 68
|
breqtrd |
|
| 70 |
69
|
3exp |
|
| 71 |
70
|
exp4a |
|
| 72 |
71
|
3expd |
|
| 73 |
72
|
rexlimdv3a |
|
| 74 |
73
|
3expib |
|
| 75 |
74
|
rexlimdvv |
|
| 76 |
75
|
adantld |
|
| 77 |
35 76
|
sylbid |
|
| 78 |
77
|
imp31 |
|
| 79 |
34 78
|
syl7 |
|
| 80 |
79
|
rexlimdvv |
|
| 81 |
80
|
rexlimdvva |
|
| 82 |
81
|
adantld |
|
| 83 |
33 82
|
sylbid |
|
| 84 |
83
|
3impia |
|
| 85 |
84
|
rexlimdv |
|
| 86 |
85
|
imp |
|
| 87 |
31 86
|
syldan |
|
| 88 |
18 87
|
syldan |
|