Description: Lemma for 4atexlem7 . (Contributed by NM, 25-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4thatleme.l | |
|
4thatleme.j | |
||
4thatleme.m | |
||
4thatleme.a | |
||
4thatleme.h | |
||
Assertion | 4atexlemex6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatleme.l | |
|
2 | 4thatleme.j | |
|
3 | 4thatleme.m | |
|
4 | 4thatleme.a | |
|
5 | 4thatleme.h | |
|
6 | simp11l | |
|
7 | simp11 | |
|
8 | simp12 | |
|
9 | simp13l | |
|
10 | simp32 | |
|
11 | 1 2 3 4 5 | lhpat | |
12 | 7 8 9 10 11 | syl112anc | |
13 | simp2r | |
|
14 | simp12l | |
|
15 | simp33 | |
|
16 | 1 2 4 | atnlej1 | |
17 | 6 13 14 9 15 16 | syl131anc | |
18 | 17 | necomd | |
19 | 1 2 3 4 5 | lhpat | |
20 | 7 8 13 18 19 | syl112anc | |
21 | 2 4 | hlsupr2 | |
22 | 6 12 20 21 | syl3anc | |
23 | simp111 | |
|
24 | simp112 | |
|
25 | simp113 | |
|
26 | simp12r | |
|
27 | simp2ll | |
|
28 | 27 | 3ad2ant1 | |
29 | simp2lr | |
|
30 | 29 | 3ad2ant1 | |
31 | simp131 | |
|
32 | 28 30 31 | 3jca | |
33 | 3simpc | |
|
34 | simp132 | |
|
35 | simp133 | |
|
36 | biid | |
|
37 | eqid | |
|
38 | eqid | |
|
39 | eqid | |
|
40 | eqid | |
|
41 | 36 1 2 3 4 5 37 38 39 40 | 4atexlemex4 | |
42 | 36 1 2 3 4 5 37 38 39 | 4atexlemex2 | |
43 | 41 42 | pm2.61dane | |
44 | 23 24 25 26 32 33 34 35 43 | syl332anc | |
45 | 44 | rexlimdv3a | |
46 | 22 45 | mpd | |