Metamath Proof Explorer


Theorem 4atexlemex6

Description: Lemma for 4atexlem7 . (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4thatleme.l ˙=K
4thatleme.j ˙=joinK
4thatleme.m ˙=meetK
4thatleme.a A=AtomsK
4thatleme.h H=LHypK
Assertion 4atexlemex6 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QzA¬z˙WP˙z=S˙z

Proof

Step Hyp Ref Expression
1 4thatleme.l ˙=K
2 4thatleme.j ˙=joinK
3 4thatleme.m ˙=meetK
4 4thatleme.a A=AtomsK
5 4thatleme.h H=LHypK
6 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QKHL
7 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QKHLWH
8 simp12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QPA¬P˙W
9 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QQA
10 simp32 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QPQ
11 1 2 3 4 5 lhpat KHLWHPA¬P˙WQAPQP˙Q˙WA
12 7 8 9 10 11 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QP˙Q˙WA
13 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QSA
14 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QPA
15 simp33 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙Q¬S˙P˙Q
16 1 2 4 atnlej1 KHLSAPAQA¬S˙P˙QSP
17 6 13 14 9 15 16 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QSP
18 17 necomd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QPS
19 1 2 3 4 5 lhpat KHLWHPA¬P˙WSAPSP˙S˙WA
20 7 8 13 18 19 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QP˙S˙WA
21 2 4 hlsupr2 KHLP˙Q˙WAP˙S˙WAtAP˙Q˙W˙t=P˙S˙W˙t
22 6 12 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙t
23 simp111 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tKHLWH
24 simp112 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tPA¬P˙W
25 simp113 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tQA¬Q˙W
26 simp12r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tSA
27 simp2ll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QRA
28 27 3ad2ant1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tRA
29 simp2lr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙Q¬R˙W
30 29 3ad2ant1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙t¬R˙W
31 simp131 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tP˙R=Q˙R
32 28 30 31 3jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tRA¬R˙WP˙R=Q˙R
33 3simpc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙ttAP˙Q˙W˙t=P˙S˙W˙t
34 simp132 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tPQ
35 simp133 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙t¬S˙P˙Q
36 biid KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RtAP˙Q˙W˙t=P˙S˙W˙tPQ¬S˙P˙QKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RtAP˙Q˙W˙t=P˙S˙W˙tPQ¬S˙P˙Q
37 eqid P˙Q˙W=P˙Q˙W
38 eqid P˙S˙W=P˙S˙W
39 eqid Q˙t˙P˙S=Q˙t˙P˙S
40 eqid R˙t˙P˙S=R˙t˙P˙S
41 36 1 2 3 4 5 37 38 39 40 4atexlemex4 KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RtAP˙Q˙W˙t=P˙S˙W˙tPQ¬S˙P˙QQ˙t˙P˙S=SzA¬z˙WP˙z=S˙z
42 36 1 2 3 4 5 37 38 39 4atexlemex2 KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RtAP˙Q˙W˙t=P˙S˙W˙tPQ¬S˙P˙QQ˙t˙P˙SSzA¬z˙WP˙z=S˙z
43 41 42 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RtAP˙Q˙W˙t=P˙S˙W˙tPQ¬S˙P˙QzA¬z˙WP˙z=S˙z
44 23 24 25 26 32 33 34 35 43 syl332anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tzA¬z˙WP˙z=S˙z
45 44 rexlimdv3a KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QtAP˙Q˙W˙t=P˙S˙W˙tzA¬z˙WP˙z=S˙z
46 22 45 mpd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSAP˙R=Q˙RPQ¬S˙P˙QzA¬z˙WP˙z=S˙z