Metamath Proof Explorer


Theorem 4atlem10a

Description: Lemma for 4at . Substitute V for R . (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem10a KHLPAQARAVAWA¬R˙P˙Q˙WR˙P˙Q˙V˙WP˙Q˙R˙W=P˙Q˙V˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simp11 KHLPAQARAVAWA¬R˙P˙Q˙WKHL
5 simp21 KHLPAQARAVAWA¬R˙P˙Q˙WRA
6 simp22 KHLPAQARAVAWA¬R˙P˙Q˙WVA
7 4 hllatd KHLPAQARAVAWA¬R˙P˙Q˙WKLat
8 simp1 KHLPAQARAVAWA¬R˙P˙Q˙WKHLPAQA
9 eqid BaseK=BaseK
10 9 2 3 hlatjcl KHLPAQAP˙QBaseK
11 8 10 syl KHLPAQARAVAWA¬R˙P˙Q˙WP˙QBaseK
12 simp23 KHLPAQARAVAWA¬R˙P˙Q˙WWA
13 9 3 atbase WAWBaseK
14 12 13 syl KHLPAQARAVAWA¬R˙P˙Q˙WWBaseK
15 9 2 latjcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
16 7 11 14 15 syl3anc KHLPAQARAVAWA¬R˙P˙Q˙WP˙Q˙WBaseK
17 simp3 KHLPAQARAVAWA¬R˙P˙Q˙W¬R˙P˙Q˙W
18 9 1 2 3 hlexchb2 KHLRAVAP˙Q˙WBaseK¬R˙P˙Q˙WR˙V˙P˙Q˙WR˙P˙Q˙W=V˙P˙Q˙W
19 4 5 6 16 17 18 syl131anc KHLPAQARAVAWA¬R˙P˙Q˙WR˙V˙P˙Q˙WR˙P˙Q˙W=V˙P˙Q˙W
20 1 2 3 4atlem4c KHLPAQAVAWAP˙Q˙V˙W=V˙P˙Q˙W
21 8 6 12 20 syl12anc KHLPAQARAVAWA¬R˙P˙Q˙WP˙Q˙V˙W=V˙P˙Q˙W
22 21 breq2d KHLPAQARAVAWA¬R˙P˙Q˙WR˙P˙Q˙V˙WR˙V˙P˙Q˙W
23 1 2 3 4atlem4c KHLPAQARAWAP˙Q˙R˙W=R˙P˙Q˙W
24 8 5 12 23 syl12anc KHLPAQARAVAWA¬R˙P˙Q˙WP˙Q˙R˙W=R˙P˙Q˙W
25 24 21 eqeq12d KHLPAQARAVAWA¬R˙P˙Q˙WP˙Q˙R˙W=P˙Q˙V˙WR˙P˙Q˙W=V˙P˙Q˙W
26 19 22 25 3bitr4d KHLPAQARAVAWA¬R˙P˙Q˙WR˙P˙Q˙V˙WP˙Q˙R˙W=P˙Q˙V˙W