Description: Lemma for 4sq . Change bound variables in S . (Contributed by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 4sq.1 | |
|
Assertion | 4sqlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | |
|
2 | 1 | eleq2i | |
3 | id | |
|
4 | ovex | |
|
5 | 3 4 | eqeltrdi | |
6 | 5 | a1i | |
7 | 6 | rexlimdvva | |
8 | 7 | rexlimivv | |
9 | oveq1 | |
|
10 | 9 | oveq1d | |
11 | 10 | oveq1d | |
12 | 11 | eqeq2d | |
13 | 12 | 2rexbidv | |
14 | oveq1 | |
|
15 | 14 | oveq2d | |
16 | 15 | oveq1d | |
17 | 16 | eqeq2d | |
18 | 17 | 2rexbidv | |
19 | 13 18 | cbvrex2vw | |
20 | oveq1 | |
|
21 | 20 | oveq1d | |
22 | 21 | oveq2d | |
23 | 22 | eqeq2d | |
24 | oveq1 | |
|
25 | 24 | oveq2d | |
26 | 25 | oveq2d | |
27 | 26 | eqeq2d | |
28 | 23 27 | cbvrex2vw | |
29 | eqeq1 | |
|
30 | 29 | 2rexbidv | |
31 | 28 30 | bitrid | |
32 | 31 | 2rexbidv | |
33 | 19 32 | bitrid | |
34 | 8 33 | elab3 | |
35 | 2 34 | bitri | |