| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|
| 2 |
1
|
eleq2i |
|
| 3 |
|
id |
|
| 4 |
|
ovex |
|
| 5 |
3 4
|
eqeltrdi |
|
| 6 |
5
|
a1i |
|
| 7 |
6
|
rexlimdvva |
|
| 8 |
7
|
rexlimivv |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
oveq1d |
|
| 11 |
10
|
oveq1d |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
12
|
2rexbidv |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
oveq2d |
|
| 16 |
15
|
oveq1d |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
17
|
2rexbidv |
|
| 19 |
13 18
|
cbvrex2vw |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
oveq1d |
|
| 22 |
21
|
oveq2d |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
|
oveq1 |
|
| 25 |
24
|
oveq2d |
|
| 26 |
25
|
oveq2d |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
23 27
|
cbvrex2vw |
|
| 29 |
|
eqeq1 |
|
| 30 |
29
|
2rexbidv |
|
| 31 |
28 30
|
bitrid |
|
| 32 |
31
|
2rexbidv |
|
| 33 |
19 32
|
bitrid |
|
| 34 |
8 33
|
elab3 |
|
| 35 |
2 34
|
bitri |
|