Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4sqlem5.2 | |
|
4sqlem5.3 | |
||
4sqlem5.4 | |
||
Assertion | 4sqlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | |
|
2 | 4sqlem5.3 | |
|
3 | 4sqlem5.4 | |
|
4 | 1 | zcnd | |
5 | 1 | zred | |
6 | 2 | nnred | |
7 | 6 | rehalfcld | |
8 | 5 7 | readdcld | |
9 | 2 | nnrpd | |
10 | 8 9 | modcld | |
11 | 10 | recnd | |
12 | 7 | recnd | |
13 | 11 12 | subcld | |
14 | 3 13 | eqeltrid | |
15 | 4 14 | nncand | |
16 | 4 14 | subcld | |
17 | 6 | recnd | |
18 | 2 | nnne0d | |
19 | 16 17 18 | divcan1d | |
20 | 3 | oveq2i | |
21 | 4 11 12 | subsub3d | |
22 | 20 21 | eqtrid | |
23 | 22 | oveq1d | |
24 | moddifz | |
|
25 | 8 9 24 | syl2anc | |
26 | 23 25 | eqeltrd | |
27 | 2 | nnzd | |
28 | 26 27 | zmulcld | |
29 | 19 28 | eqeltrrd | |
30 | 1 29 | zsubcld | |
31 | 15 30 | eqeltrrd | |
32 | 31 26 | jca | |