Metamath Proof Explorer


Theorem 4sqlem5

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Hypotheses 4sqlem5.2 φA
4sqlem5.3 φM
4sqlem5.4 B=A+M2modMM2
Assertion 4sqlem5 φBABM

Proof

Step Hyp Ref Expression
1 4sqlem5.2 φA
2 4sqlem5.3 φM
3 4sqlem5.4 B=A+M2modMM2
4 1 zcnd φA
5 1 zred φA
6 2 nnred φM
7 6 rehalfcld φM2
8 5 7 readdcld φA+M2
9 2 nnrpd φM+
10 8 9 modcld φA+M2modM
11 10 recnd φA+M2modM
12 7 recnd φM2
13 11 12 subcld φA+M2modMM2
14 3 13 eqeltrid φB
15 4 14 nncand φAAB=B
16 4 14 subcld φAB
17 6 recnd φM
18 2 nnne0d φM0
19 16 17 18 divcan1d φABM M=AB
20 3 oveq2i AB=AA+M2modMM2
21 4 11 12 subsub3d φAA+M2modMM2=A+M2-A+M2modM
22 20 21 eqtrid φAB=A+M2-A+M2modM
23 22 oveq1d φABM=A+M2-A+M2modMM
24 moddifz A+M2M+A+M2-A+M2modMM
25 8 9 24 syl2anc φA+M2-A+M2modMM
26 23 25 eqeltrd φABM
27 2 nnzd φM
28 26 27 zmulcld φABM M
29 19 28 eqeltrrd φAB
30 1 29 zsubcld φAAB
31 15 30 eqeltrrd φB
32 31 26 jca φBABM