Metamath Proof Explorer


Theorem 5oalem4

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem3.1 A S
5oalem3.2 B S
5oalem3.3 C S
5oalem3.4 D S
5oalem3.5 F S
5oalem3.6 G S
Assertion 5oalem4 x A y B z C w D f F g G x + y = f + g z + w = f + g x - z A + C B + D A + F B + G + C + F D + G

Proof

Step Hyp Ref Expression
1 5oalem3.1 A S
2 5oalem3.2 B S
3 5oalem3.3 C S
4 5oalem3.4 D S
5 5oalem3.5 F S
6 5oalem3.6 G S
7 eqtr3 x + y = f + g z + w = f + g x + y = z + w
8 1 2 3 4 5oalem2 x A y B z C w D x + y = z + w x - z A + C B + D
9 7 8 sylan2 x A y B z C w D x + y = f + g z + w = f + g x - z A + C B + D
10 9 adantlr x A y B z C w D f F g G x + y = f + g z + w = f + g x - z A + C B + D
11 1 2 3 4 5 6 5oalem3 x A y B z C w D f F g G x + y = f + g z + w = f + g x - z A + F B + G + C + F D + G
12 10 11 elind x A y B z C w D f F g G x + y = f + g z + w = f + g x - z A + C B + D A + F B + G + C + F D + G