Metamath Proof Explorer


Theorem aaliou3lem1

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aaliou3lem.a G=cA2A!12cA
Assertion aaliou3lem1 ABAGB

Proof

Step Hyp Ref Expression
1 aaliou3lem.a G=cA2A!12cA
2 oveq1 c=BcA=BA
3 2 oveq2d c=B12cA=12BA
4 3 oveq2d c=B2A!12cA=2A!12BA
5 ovex 2A!12BAV
6 4 1 5 fvmpt BAGB=2A!12BA
7 6 adantl ABAGB=2A!12BA
8 2rp 2+
9 simpl ABAA
10 9 nnnn0d ABAA0
11 10 faccld ABAA!
12 11 nnzd ABAA!
13 12 znegcld ABAA!
14 rpexpcl 2+A!2A!+
15 8 13 14 sylancr ABA2A!+
16 halfre 12
17 halfgt0 0<12
18 16 17 elrpii 12+
19 eluzelz BAB
20 nnz AA
21 zsubcl BABA
22 19 20 21 syl2anr ABABA
23 rpexpcl 12+BA12BA+
24 18 22 23 sylancr ABA12BA+
25 15 24 rpmulcld ABA2A!12BA+
26 25 rpred ABA2A!12BA
27 7 26 eqeltrd ABAGB