Metamath Proof Explorer


Theorem aaliou3lem4

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F=a2a!
aaliou3lem.d L=bFb
aaliou3lem.e H=cb=1cFb
Assertion aaliou3lem4 L

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F=a2a!
2 aaliou3lem.d L=bFb
3 aaliou3lem.e H=cb=1cFb
4 nnuz =1
5 4 sumeq1i bFb=b1Fb
6 2 5 eqtri L=b1Fb
7 1nn 1
8 eqid c121!12c1=c121!12c1
9 8 1 aaliou3lem3 1seq1+Fdomb1Fb+b1Fb221!
10 9 simp2d 1b1Fb+
11 rpre b1Fb+b1Fb
12 7 10 11 mp2b b1Fb
13 6 12 eqeltri L