Metamath Proof Explorer


Theorem abladdsub

Description: Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion abladdsub GAbelXBYBZBX+˙Y-˙Z=X-˙Z+˙Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 1 2 ablcom GAbelXBYBX+˙Y=Y+˙X
5 4 3adant3r3 GAbelXBYBZBX+˙Y=Y+˙X
6 5 oveq1d GAbelXBYBZBX+˙Y-˙Z=Y+˙X-˙Z
7 ablgrp GAbelGGrp
8 7 adantr GAbelXBYBZBGGrp
9 simpr2 GAbelXBYBZBYB
10 simpr1 GAbelXBYBZBXB
11 simpr3 GAbelXBYBZBZB
12 1 2 3 grpaddsubass GGrpYBXBZBY+˙X-˙Z=Y+˙X-˙Z
13 8 9 10 11 12 syl13anc GAbelXBYBZBY+˙X-˙Z=Y+˙X-˙Z
14 simpl GAbelXBYBZBGAbel
15 1 3 grpsubcl GGrpXBZBX-˙ZB
16 8 10 11 15 syl3anc GAbelXBYBZBX-˙ZB
17 1 2 ablcom GAbelYBX-˙ZBY+˙X-˙Z=X-˙Z+˙Y
18 14 9 16 17 syl3anc GAbelXBYBZBY+˙X-˙Z=X-˙Z+˙Y
19 6 13 18 3eqtrd GAbelXBYBZBX+˙Y-˙Z=X-˙Z+˙Y