Metamath Proof Explorer


Theorem ablsimpgcygd

Description: An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof shortened by Rohan Ridenour, 31-Oct-2023)

Ref Expression
Hypotheses ablsimpgcygd.1 φGAbel
ablsimpgcygd.2 φGSimpGrp
Assertion ablsimpgcygd φGCycGrp

Proof

Step Hyp Ref Expression
1 ablsimpgcygd.1 φGAbel
2 ablsimpgcygd.2 φGSimpGrp
3 eqid BaseG=BaseG
4 eqid 0G=0G
5 3 4 2 simpgnideld φxBaseG¬x=0G
6 eqid G=G
7 2 simpggrpd φGGrp
8 7 adantr φxBaseG¬x=0GGGrp
9 simprl φxBaseG¬x=0GxBaseG
10 1 ad2antrr φxBaseG¬x=0GyBaseGGAbel
11 2 ad2antrr φxBaseG¬x=0GyBaseGGSimpGrp
12 simplrl φxBaseG¬x=0GyBaseGxBaseG
13 simplrr φxBaseG¬x=0GyBaseG¬x=0G
14 simpr φxBaseG¬x=0GyBaseGyBaseG
15 3 4 6 10 11 12 13 14 ablsimpg1gend φxBaseG¬x=0GyBaseGzy=zGx
16 3 6 8 9 15 iscygd φxBaseG¬x=0GGCycGrp
17 5 16 rexlimddv φGCycGrp