Description: An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof shortened by Rohan Ridenour, 31-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpgcygd.1 | |
|
ablsimpgcygd.2 | |
||
Assertion | ablsimpgcygd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpgcygd.1 | |
|
2 | ablsimpgcygd.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 2 | simpgnideld | |
6 | eqid | |
|
7 | 2 | simpggrpd | |
8 | 7 | adantr | |
9 | simprl | |
|
10 | 1 | ad2antrr | |
11 | 2 | ad2antrr | |
12 | simplrl | |
|
13 | simplrr | |
|
14 | simpr | |
|
15 | 3 4 6 10 11 12 13 14 | ablsimpg1gend | |
16 | 3 6 8 9 15 | iscygd | |
17 | 5 16 | rexlimddv | |