Metamath Proof Explorer


Theorem ablsimpgcygd

Description: An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof shortened by Rohan Ridenour, 31-Oct-2023)

Ref Expression
Hypotheses ablsimpgcygd.1 φ G Abel
ablsimpgcygd.2 φ G SimpGrp
Assertion ablsimpgcygd φ G CycGrp

Proof

Step Hyp Ref Expression
1 ablsimpgcygd.1 φ G Abel
2 ablsimpgcygd.2 φ G SimpGrp
3 eqid Base G = Base G
4 eqid 0 G = 0 G
5 3 4 2 simpgnideld φ x Base G ¬ x = 0 G
6 eqid G = G
7 2 simpggrpd φ G Grp
8 7 adantr φ x Base G ¬ x = 0 G G Grp
9 simprl φ x Base G ¬ x = 0 G x Base G
10 1 ad2antrr φ x Base G ¬ x = 0 G y Base G G Abel
11 2 ad2antrr φ x Base G ¬ x = 0 G y Base G G SimpGrp
12 simplrl φ x Base G ¬ x = 0 G y Base G x Base G
13 simplrr φ x Base G ¬ x = 0 G y Base G ¬ x = 0 G
14 simpr φ x Base G ¬ x = 0 G y Base G y Base G
15 3 4 6 10 11 12 13 14 ablsimpg1gend φ x Base G ¬ x = 0 G y Base G z y = z G x
16 3 6 8 9 15 iscygd φ x Base G ¬ x = 0 G G CycGrp
17 5 16 rexlimddv φ G CycGrp